
Instance Record and Object Notation (irON) Specification

Specification Document - 18 February 2010
Latest version:

http://openstructs.org/iron/iron-specification

Last update:
$Date: 2010/02/18 12:32:43 $

Revision:
Revision: 0.9

Editors:
Frédérick Giasson - Structured Dynamics
Michael Bergman - Structured Dynamics

Authors:
Michael Bergman - Structured Dynamics
Frédérick Giasson - Structured Dynamics

Copyright © 2009-2010 by Structured Dynamics LLC.

irON: instance record and Object Notation by Structured Dynamics LLC is licensed under a Creative Commons Attribution-Share Alike
3.0. irON's parsers or converters are separately available under the Apache License, Version 2.0.

Abstract
irON (instance record and Object Notation) is a abstract notation and associated vocabulary for specifying RDF triples and schema in non-RDF forms. Its
purpose is to allow users and tools in non-RDF formats to stage interoperable datasets using RDF. The notation supports writing RDF and schema in JSON
(irJSON), XML (irXML) and comma-delimited (CSV) formats (commON). The notation specification includes guidance for creating instance records (including
in bulk), linkages to existing ontologies and schema, and schema definitions. Profiles and examples are also provided for each of the irXML, irJSON and
commON serializations.

Status of This Document
NOTE: This section describes the status of this document at the time of its publication. Other documents may supersede this document.

This specification is an evolving document. Via its code and vocabulary release site, the authors welcome suggestions on the irON notation or its various
serializations, including irXML, irJSON and commON. Users and developers are also welcomed to participate in the Google discussion group for the irON
notation. The current specification is also available in download as a PDF .

This document may be updated or added to based on implementation experience, but no commitment is made by the authors regarding future
updates.

Table of Contents
Abstract

Status of This Document

BACKGROUND AND OVERVIEW
Purpose
Terminology of this Document
irON Concepts and Vocabulary
The Attribute Concept
The Type or Value Format Concepts
The Record Concept
The Dataset Concept
The Schema Concept
The Linkage Concept
Relation to RDF
Role and Choice of the Three Profiles

THE INSTANCE RECORD AND OBJECT NOTATION
Introduction
Profiles, Modules and Files

The Three Profiles of irXML, irJSON and commON
Modules or Sections
Files and MIME Types
The Special metaFile Attribute

Vocabulary and Reserved Keywords
Standard, Reserved Vocabulary
Primitives

1

http://openstructs.org/iron/iron-specification
http://fgiasson.com/
http://www.structureddynamics.com/
http://www.mkbergman.com
http://www.structureddynamics.com/
http://www.mkbergman.com
http://www.structureddynamics.com/
http://fgiasson.com/
http://www.structureddynamics.com/
http://creativecommons.org/licenses/by-sa/3.0/us/
http://openstructs.org/iron/iron-specification
http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.apache.org/licenses/LICENSE-2.0.html
http://code.google.com/p/iron-notation/
http://openstructs.org/iron/iron-specification
http://groups.google.com/group/iron-notation
http://openstructs.org/sites/openstructs.org/files/downloads/irON_specification_v8.pdf
http://openstructs.org/sites/openstructs.org/files/downloads/irON_specification_v8.pdf

Types
General Object Types
Other Reserved Terms
A Note on User Interface Attributes

Local or Global References
Reference Resolution

Dataset Object
Core Dataset Attributes
Abstract Dataset Specification Example

Adding Metadata
Suggested Metadata Attributes

Instance Record Object
Instance Record Attributes
Abstract Instance Record Specification Example

Structure Schema Object
Structure Schema Attributes
Abstract Structure Schema Specification Example

Schema Linkage Object
Schema Linkage Attributes
Linking a Dataset to a Structure Schema
Abstract Linkage Specification Example

Processing Options
Augmenting Attributes with Metadata

Description of Use Case
Metadata Example
Limitations to Reified Metadata

Guidelines for Dataset Scoping

SUB-PART 1: irXML PROFILE
Role and Use
No Current Processor
Differences from Generic irON

Augmenting Attributes with Metadata
Altered Keyword Set

Summary of Conventions
XML File Structure
Dataset Object

Dataset Examples
Using the metaFile Attribute
Embedding the Metadata

Instance Record Object
Instance Record Example

Structure Schema Object
Structure Schema Example

Linkage Object
Linkage Example
Linking a Dataset to a Structure or Schema Linkage

Case #1
Case #2

Specific irXML Examples
Example #1: First irXML Example
Converting irXML into RDF

SUB-PART 2: irJSON PROFILE
Role and Use
Differences from Generic JSON
Differences from Generic irON
Summary of Conventions
JSON File Structure
Dataset Object

Dataset Examples
Using the metaFile Attribute
Embedding the Metadata

Instance Record Object
Instance Record Example

Structure Schema Object
Structure Schema Example

Linkage Object
Linkage Example
Linking a Dataset to a Structure or Schema Linkage

Case #1
Case #2

Specific irJSON Examples
Example #1: Bibliographic Record
Example #2: Best Buy Mp3 Player
Example #3: A irJSON Bibliographic Vocabulary to BibTeX Schema Linkage
Example #4: A irJSON Bibliographic Vocabulary to RDF Schema Linkage
Converting irJSON into RDF

SUB-PART 3: commON PROFILE
Role and Use
Differences from Generic CSV
Differences from Generic irON

No Schema Module, Other Changes
Augmenting Attributes with Metadata

2

Specific Processing Options
Instance Record Presentation Styles
Reduced Keyword Set

General commON Design
Summary of Conventions
Dataset Object

Dataset Example
Instance Record Object

Instance Record Table Examples
Instance Record Row Style
Instance Records Stacked Style

Schema Linkage
Linkage Example

Downloadable Examples

ACKNOWLEDGEMENTS

REFERENCES

BACKGROUND AND OVERVIEW
This section provides background information on the specification and this document.

Purpose
irON (instance record and Object Notation) is a abstract notation and associated vocabulary for specifying RDF triples and schema in non-RDF forms. Its
purpose is to allow users and tools in non-RDF formats to stage interoperable datasets using RDF. The notation supports writing RDF and schema in JSON
(irJSON), XML (irXML) and comma-delimited (CSV) formats (commON). The notation specification includes guidance for creating instance records (including
in bulk), linkages to existing ontologies and schema, and schema definitions. Profiles and examples are also provided for each of the irXML, irJSON and
commON serializations.

irON is premised on these considerations and observations:

RDF (Resource Description Framework) is a powerful canonical data model for data interoperability [1]
However, most existing data is not written in RDF and many authors and publishers prefer other formats for various reasons
Many formats that are easier to author and read than RDF are variants of the attribute-value pair construct [2], which can readily be
expressed as RDF, and
A common abstract notation for converting to RDF would also enable non-RDF formats to become somewhat interchangeable, thus
allowing the strengths of each to be combined.

The irON notation and vocabulary is designed to allow the conceptual structure ("schema") of datasets to be described, to facilitate easy description of the
instance records that populate those datasets, and to link different structures for different schema to one another. In these manners, more-or-less complete
RDF data structures and instances can be described in alternate formats and be made interoperable. irON provides a simple and naïve information
exchange notation expressive enough to describe most any data entity.

The notation also provides a framework for extending existing schema. This means that irON and its various serializations can represent many existing,
common data formats and standards, while also providing a vehicle for extending them.

For different reasons and for different audiences, the formats of XML, JSON and CSV (spreadsheets) were chosen as the representative formats across
which to formulate the abstract irON notation. Further rationale for these choices is discussed under their respective profiles below.

The abstract irON notation is written in a pseudo-XML syntax. Specific syntax examples for each of the three irON serializations are also provided in the
code example sections for each format profile.

Terminology of this Document
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC 2119 [RFC 2119].

Namespace URIs of the general form "http://www.example.com/." represents some application-dependent or context-dependent URI as defined in RFC 2396
[RFC 2396].

As used herein, the name and concept of attribute is used interchangeable with property. Both of these are equivalent to a predicate in an RDF triple. It is
recommended that parsers for the various irON serializations recognize both terms (and their variants) interchangeably [3].

irON Concepts and Vocabulary
irON is based on a set of concepts that provide the common language of this specification:

Attribute - each record (and other instances) is characterized by one or more attributes, which provide descriptive characteristics for that
record. Every attribute is matched with a value, which can range from descriptive text strings to lists or numeric values. These values
optionally have specified formats
Type - "type" is a frequent term in many different language specifications. Here, type denotes a class of "things" that is a frequent
container (or set) for classifying and describing things in relation to other things. Multiple entities or individuals may be members of a
given type, such as Person or Book
Record - a structured format for describing the attribute(s) and associated metadata and identifiers for a single bibliographic entity; a
record is often defined with a standard structure or scope for conveying the description of multiple records
Dataset - a set of one or more similar records that describe similar "things". The dataset is the normal unit ("container") of data exchange
between different publishers and different consumers
Metadata - dataset-level or record-level metadata that describes broad characteristics of the data itself, such as creation date or author,
version number, etc.

3

http://bibliontology.com/#ref-rfc2119
http://bibliontology.com/#ref-rfc2396

Schema (structure) - the conceptual relationships between types and for relating attributes, and
Linkage (schema) - the specified mapping to relate the nature of class types and attributes in a given dataset (set of records) to other
schema or structures.

This section describes these concepts in some detail.

In addition, irON has a set of reserved keywords that comprise its standard irON vocabulary. This vocabulary is composed of the minimal set of attributes
used to describe “any” instance record in the world. There is a core set of attributes shared amongst all instance records. Some of these core attributes
have been introduced for some specific purposes such as: user interface display, instance record identification and accessibility, instance record data
maintenance, etc.

The Attribute Concept
Recall that irON has an attribute:value pair orientation. Any argument that appears in the first part of this pair is an attribute. In other various systems and
languages, an "attribute" may also be known as a property, predicate, field, feature, parameter , dimension, characteristic or independent variable. As used
herein, the name and concept of attribute is used interchangeable with property and field. These are equivalent to a predicate in an RDF triple [4].

An attribute in irON is the human-readable description for what its following value means and how it is to be interpreted. Some attribute keywords are
classificatory in nature (in which case they are called types), some attributes are processing in nature (signalling a new module and specification to the
parser), and some are designed to describe the nature of the instance, either for records or other objects.

Each attribute may be declared with an allowedType. An allowedType must be an Object or its various sub-types. An Object or its sub-types may be: 1) the
general designation of Object itself (separate from a literal or string; see below); 2) a reference to a given class or set separately provided via the type
declaration; or, 3) a keyword of dataset, schema or Linkage that signals a particular processing module to the parser.

The use of allowedType tells the irON validator whether an incoming record is valid or not according to its schema specification. (Note the declaration is
optional for irON schema extensions; not providing the declaration simply means the parser is unable to check the proper domain of the instance.) It is the
way that only properly specified data and records are accepted by the system.

Thus, attributes can be used in many areas of irON. However, their principle use is to provide the descriptive fields for characterizing records.

The Type or Value Format Concepts
The second part of the attribute:value pair orientation is the value. Depending on the kind of attribute that is declared in a irON schema, only certain
kinds of values may be accepted for the value argument.

For most record descriptors, the value format for the value is a string (which can be further qualified as to the acceptable format of that string). In other
cases, only specified values may be allowed.

When the attribute is type it denotes a class of "things"; that is, a container (or set) for classifying and describing things in relation to other things. Types
can be assigned as descriptors for records. Multiple entities or individuals may be members of a given type, such as Person or Book.

By convention, types in irON are initial capitalized, such as Person or Book .

irON provides the allowedValue attribute to enforce proper type assignments or to ensure correct string formatting. As with allowedType (see above), these
declarations are provided for the standard irON vocabulary, but are optional for extensions.

The Record Concept
The aim of irON is to describe records. A record is the main concept in the irON notation. A record is simply a means to represent and convey the
information (”attributes”) describing a given instance. An instance is the thing at hand. These instances may be individuals (such as a given person or
book) or may represent groupings of things (such as the entire holdings or collection of books in a given library).

A record may convey information about multiple instances, but each block of information ("record") for each instance should only pertain to that instance.
Thus, for example, if the instance is a paper citation, the instance is the paper. If that paper instance asserts multiple authors, each with different
institutional affiliations, those are attributes of the authors, not of the paper.

When you find you are attempting to describe multiple entities in a given record, one option is to create a separate record for each entity and assert their
relationships. But this best practice may not always be possible or desired. As alternatives, irON also provides facilities to assign metadata in separate files
(see tge soecuak metaFile attribute below) or to annotate primary attributes with their own explanatory metadata (see Augmenting Attributes with Metadata
below).

When multiple records are being conveyed, they are treated as an array object and designated with the recordList keyword in any serialization profile.array.

The Dataset Concept
Records do not exist in a vacuum. The dataset provides a container object for records that allows additional information (the metadata) about records in the
aggregate. Dataset information is not limited to the descriptions or attributes within the records themselves. A dataset can also be used to describe
information about the creation of instances records, and to link external resources to them (like the schema structures and linkages discussed below).

A dataset can be seen as an aggregation of records used to keep a reference between the records and their source (provenance). A dataset can be split
into multiple dataset segments. Each segment is written to a file serialized in some way. Each segment of a dataset shares the same <id> of the dataset.

A dataset is not a database, though a database can be a dataset. As a conveyance of similar records (that is, describing the same basic "things"), datasets
have a consistency of scope. A circumstance where there are heterogeneous records for quite disparate "things" would suggest creating multiple datasets
to homogenize those representations.

The Schema Concept
The schema structure is used to describe the structural relationships amongst the class types and attributes used to describe records. This schema aims to
create basic taxonomies of types and attributes that can be used as a simple graph or network structure to perform simple reasoning over the record
instances. The schema structure is also used to define any structural features of a dataset: the class types and formats of the attributes used to describe
the records of the dataset.

The Linkage Concept
4

The schema linkage object is a specification that links the types and attributes used to describe records to types and attributes of other formats and
languages used to describe data. The linkage schema leads to transformation rules to convert records in other formats. A set of special attributes has been
created to define a schema linkage. Another keyword used for this linkages is the mapTo attribute.

Relation to RDF
The pivotal premise of irON is the desirability of using the RDF data model as the canonical basis for interoperable data. RDF provides a data model
capable of representing any extant data structure and any extant data format. This flexibility makes RDF a perfect data model for federating across
disparate data sources.

RDF is a data model that is expressed as simple subject-predicate-object “triples”. A triple is also known as a “statement” and is the basic “fact” or asserted
unit of knowledge in RDF. Multiple statements get combined together by matching the subjects or objects as “nodes” to one another, with the predicates
acting as connectors or “edges” between those nodes. As these node-edge-node triple statements get aggregated, a network structure emerges, known as
the RDF graph [1]. When these connections are coherent, the graph becomes a conceptual and schematic representation of the domain at hand and its
relationships, and can be reasoned over and have other useful analysis done to it.

In irON, basic instance data is represented as simple attribute-value pairs where the subject is the instance itself, the predicate is the attribute, and the
object is the value. Such instance records are also known as the ABox. The structural relationships within RDF are defined in ontologies, also known as the
TBox, which are basically equivalent to a schema [4]. RDF vocabularies and schema guide how participating data can be represented and built up into
more complex structures and conceptual world views.

The simple design of irON is in keeping with the limited roles and work associated with an ABox. Only attributes and metadata for an instance are being
asserted. Conceptual relationships are dealt with separately via the Schema object (see the Structure Schema Object below). Specialized work, such as
checking data validity, can be applied against these instance records, but is external to this specification.

The focus of irON, then, is the conveyance of these instance records (ABox) (though there are some limited provisions for communicating the TBox
conceptual relationships and linkages to them; see below). The ability of irON to act as it does as an abstract notation across multiple, non-RDF data forms
is based on this clean understanding of the roles of the ABox and TBox.

Role and Choice of the Three Profiles
RDF is not yet a common data model. And, in any case, RDF can be serialized with a number of formats such as XML, N3, N-triples, Turtle, or RDFa.
However, despite these serialization options, and no matter the format, these RDF variants still are presented and organized around the "triples" construct
of subject - predicate - object.

There are much more common data formats in the wild. In order to derive a properly inclusive abstract notation, then, it is important to select a number of
these leading formats and to generalize around them. The derivation of the irON abstract notation and vocabulary is thus based on three leading data
formats with a diversity of purposes, applications and user bases.

The first serialization selected is XML, or eXtensible Markup Language. XML has become the leading data exchange format and syntax for modern
applications. It is frequently adopted by industry groups for standards and standard exchange formats. There is a rich diversity of tools that support the
language, importantly including capable parsers and query languages. There is also a serialization of RDF in XML. As implemented in the irON notation, we
call this serialization irXML.

The second serialization selected is JSON, JavaScript Object Notation. JSON has become very popular as a Web 2.0 data exchange format and is often the
format of choice to drive JavaScript applications. There is a growing richness of tools that support JSON, including support from leading Web and general
scripting languages such as JavaScript, Python, Perl, Ruby and PHP. JSON is relatively easy to read, and is also now growing in popularity with lightweight
databases, such as CouchDB. As implemented in the irON notation, we call this serialization irJSON.

The third serialization is CSV, or comma-separated values. In existence for decades, but made famous by Microsoft as a spreadsheet exchange format,
CSV is very useful since spreadsheets can be used as authoring front-ends and applications to the creation of datasets. CSV is less expressive and
capable as a date format than the other irON serializations, yet still has a key-value pair orientation. And, via spreadsheets, datasets can be easily
authored and inspected, while also providing a rich tools environment including sorting, formatting, data validation, calculations, etc. As implemented in the
irON notation, we call this CSV serialization commON.

The following diagram shows how these three formats relate to irON and then the canonical RDF target data model:

5

http://en.wikipedia.org/wiki/Xml
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/Comma-separated_values

We have used the unique differences amongst XML, JSON and CSV to guide the embracing abstract notation within irON. This design makes RDF the
canonical choice for driving all internal tools and services. Via transforms from external forms (and vice versa) RDF becomes the data lingua franca at the
core of data interoperability systems.

Once all external data is converted into RDF, this internal representation can then be used for reverse transforms into the original form, a process known as
"round-tripping". However, because RDF is the more capable data model, some internal RDF capabilities can not be transformed into these external
formats. However, it is possible to transform the exact external input data back to its original form.

After the definition of the abstract irON notation itself, each of these three serializations — irXML, irJSON, and commON — is discussed under its own profile
with examples below.

THE INSTANCE RECORD AND OBJECT NOTATION
irON (instance record and object notation) is an abstract notation and vocabulary for specifying datasets and instance records that can be converted to
RDF under various serializations. The serializations themselves contain the syntax and necessary conventions for that specific format.

In general, each irON serialization — currently available as XML (irXML), JSON (irJSON) and comma-delimited CSV form (commON) — includes most of the
abstract notations and vocabulary within irON. However, because of format-specific differences, there are portions of the notation that are not available to a
specific serialization profile. These are noted in the individual profile descriptions.

Introduction
There are a number of "objects" or sections possible within an irON specification. These include: datasets; records; attributes; classes or types (types); a
(structure) schema; and a schema linkage. Each of these is described below with abstract examples.

Profiles, Modules and Files

The Three Profiles of irXML, irJSON and commON
The abstract irON notation is expressed in three different serializations — irXML, irJSON and commON. Each has a different audience and often slightly
different purposes.

Because of these differences, not all generic capabilities of irON nor all of its vocabulary may be applied to each serialization. This section and the following
one on Vocabulary and Reserved Keywords describe these differences.

Further, after completion of the discussion of the abstract irON notation, major sub-parts follow that describe each of the three serializations in detail and
present code and syntax examples.

Modules or Sections
irON or its serialization specifications may occur in a number of modules, or sections. All are optional. Depending on the serialization, these modules or

6

http://en.wikipedia.org/wiki/Round-trip_translation

sections may also be provided or not in separate files.

The module components in irON are:

datasets — these are the controlling structures. They have some core attributes that define their linkages to the governing schema and
may optionally include metadata or links to a metadata file (via the metaFile attribute) that more generally describes the dataset. Most
importantly, the dataset is the wrapper for instance records. When datasets are provided with an already used identifier (id attribute), the
dataset acts as a "slice", which could represent new incremental record additions to a previously defined dataset
records — instance records are the main vehicle for transmitting actual data. A recordList contains one or more records, each of which is
described by a few or many attributes. Some of these attributes are reserved, but most can be freeform and define any useful data
characteristic
schema — this is the most structured of the modules, and has the capability to describe both the relationships amongst major concepts
(classes, called types herein) in the structure and the attributes that help describe those classes and the instances that populate them.
The schema provides separate means to describe the overall schema structure (including outline or hierarchical or taxonomic
relationships and equivalences and linkages) and defining the types and formats for attributes [4]
linkage — this "bridging" module provides the vocabulary for mapping dataset attributes and class types to one or more (internal or
external) structural schema. Such structural schemas could be OWL ontologies, a relational database schema, or any other vocabularies
used by other systems to describe and exchange data
options — this module (not shown in the diagram) is for converter or parser instructions, and is not directly related to the actual data or
values of a dataset or instance records.

The relationship between these modules is as follows:

In its current version, the irXML and irJSON serializations support all of these modules. The commON serialization does not at present support the schema
module. In commON, one of the other serializations or RDF is necessary at this time to provide a structural schema definition.

Thus, here is the module coverage for the three irON formats:

 irXML irJSON commON
dataset X X X
linkage X X X
record X X X
schema X X
options X

attributeList X X X
typeList X X X
prefixList X X X
recordList X X X
metaFile X X X

Also note the xxxList entries in the table above. In irJSON, these entries are actually an array object. In irXML and commON, they are unordered lists
processed in sequence until the listing ends.

Files and MIME Types
The MIME types for these serializations are application/iron+xml, application/iron+json, or application/iron+csv, respectively, for irXML,
irJSON or commON.

Both irXML and irJSON can be packaged into single or multiple files, with keywords and conventions (see below) signaling the various modules. In commON,
at present, all specifications must occur in a single file. For all three serializations, the file type should match the standard extension for that serialization.
Namely, that is:

*.xml - irXML
*.js - irJSON
*.csv - commON.

The Special metaFile Attribute
In addition to these modules, there is also a special metaFile attribute that enables descriptions such as creation specifics, author, etc., to be provided in a
separate file. This facility can be helpful when multiple datasets or records re-use identical metadata descriptions. The value of the metaFile attribute must
be a fully specified file reference.

Of course, such metadata may also be embedded directly in a dataset or instance record, avoiding the requirement for a separate file.

7

Vocabulary and Reserved Keywords
irON has a limited vocabulary. Each of the terms in this vocabulary is reserved from general use.

Standard, Reserved Vocabulary
The standard irON vocabulary consists of the following terms. Each term and its use is explained in later sections.

Avoid using any of these vocabulary or attribute names except for the purposes outlined herein.

Primitives
irON has two basic constructs for its assigned values: primitives and types. This section provides the primitive vocabulary.

Primitives are the most basic data structures of irON. In JSON Schema, we are referring to them as formats and in XML we are referring to them as
DataTypes. These are the strings and integers of this world. At their cores, primitives are represented as a literal: a sequence of characters composing a
whole. Each primitive is a value is a rule, or a set of rules patterns that tells how the primitive value should be formatted, presented or described. The only
unrestricted literal is called the String primitive.

Primitives are different things depending on the irON serialization profile. For irJSONwith its JSON serialization, primitives are referred to as format. (In the
XML serialization of irON the similar concept is referred to as datatypes.) In JSON, primitives can be be validated by using JSON Schemas, and in XML value
formats can be validated using XML Schemas. Primitives are thus a general concept applicable to most common data serializations.

Note that the list of primitives can be extended by specialized BibJSON parsers.

Value Format Description
String A String is a series of characters. A format can be defined for a string; such a format could be a date with a particular form,

etc.

 Id The Id basic type is a special case of a String. This String has to represent the ID (partial with @ or full with @@) of a record

 Uri A URI identifier conforming to the specification document: RFC3986 - Uniform Resource Identifier (URI): Generic Syntax

 Url A URL identifier conforming to the specification document: RFC1738 - Uniform Resource Locators (URL)

Integer An integer value

Boolean A boolean value. A boolean value can be described as being "0" and "1" or "true" and "false"

Float A float value

Datetime A datetime value conforming to the ISO 8601 standard specification

Date A date part of a datetime value conforming to the ISO 8601 standard specification

Time A time part of a datetime value conforming to the ISO 8601 standard specification

Mime A mime type listed on the IANA mime types registry

Types
irON also has types of records. Each record has at least one type.

General Object Types
The more general type is the Object type. All other record types are sub-types of the Object type. The type of a record is asserted using the type attribute,
or by the reserved processing keywords of dataset, schema or linkage.

Type Description
Object An Object is a record. The Object type is the more general record type that exists. All records of a dataset are Objects, but they can be

more specific if the type attribute specify another type for a record

 Dataset The Dataset object is a specialized Object and reserved keyword that signals the basic Dataset record

 Schema The Schema (structure) object is a specialized Object and reserved keyword that signals the basic Schema (structure definition) record

 Linkage The Linkage object is a specialized Object and reserved keyword that signals the basic Linkage record

Except for the three reserved sub-types, the predominate use of type is for classifying entity records via the type declaration. Inference can be performed
on the hierarchy of types, which are themselves declared in the schema via the subTypeOf attribute (among other structural properties). This means that if
we have a Magazine sub-type of Periodical that is a sub-type of Collection, then we can infer that a record of type Magazine is also a record of types
Periodical or Collection.

Even if not defined in any schema, by convention all types are subTypeOf the Object root type.

Note the matrix also indicates whether the term is required or suggested (if not recommended, it is optional), what major module the term may belong to
(shaded section), and whether the term applies to one of the three serializations:

 Require Suggest dataset schema linkage record irXML irJSON commON
addMapping X X X
allowedType X X X
allowedValue X X X

8

http://www.faqs.org/rfcs/rfc3986.html
http://www.ietf.org/rfc/rfc1738.txt
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.iana.org/assignments/media-types/

altLabel X X X X X
attributeName X X X X X
attribute X X
attributeList X X X X X X
createDate X X X X
creator X X X X
curator X X X X
dataset X X X X
description X X X X X X
encoding X X X
equivalentPropertyTo X X X
equivalentTypeTo X X X
format X X X
href X X X X X
id X X X X X X
language X X X
linkage X X X X X
linkedType X X X X
listSeparator X
listSeparatorEscape X
maintainer X X X X
mapTo X X X X
maxValues X X X
metaData X X
metaFile X X X X X
minValues X X X
orderedValues X X X
prefixList X X X X
prefLabel X X X X X X
prefURL X X X X X X
record X X
recordList X X X X
ref X X X
schema X X X X
seqNum X
source X X X X
subPropertyOf X X X
subTypeOf X X X
typeName X X X X
type X X X X X
typeList X X X X X
updateDate X X X X
uri X X X X X
version X X X X X X X

Most all vocabulary applies to the irXML and irJSON serializations. The commON specification does not include vocabulary related to the (structure) schema
and the metaFile attribute.

Another intent of the specification is to be sparse in terms of requirements. For instance, this reserved vocabulary is fairly minimal and optional in most all
cases. The irON specification supports skeletal submissions.

Other Reserved Terms
Though not strictly prevented, it is best practice to avoid vocabulary in standard use for a given serialization. It is best to avoid target RDF or related
standard vocabulary such as sameAs, seeAlso or equivalentClass, for example.

While the irON and related processors will accept these terms, they can prove problematic after ingest and conversion.

A Note on User Interface Attributes
As a general aid to user interfaces, we recommend some standard (shared amongst all datasets and instance records) attributes to describe datasets and
instance records. These attributes have primary been introduced to help user interface systems to display, search, etc., these instance records.

UI-
9

UI-
influenced
Attribute

Discussion

prefLabel The prefLabel attribute is used to describe human readable labels for datasets and instance records. It is a complement to the separate,
alternative labels (altLabel) attribute. prefLabel by definition can not be a list or array.

The prefLabel is a reserved attribute for the specific name or label you wish to be used and have appear in user interfaces about the thing at
hand. It has no more importance than being your preferred designated label for that thing. Thus, as the main human readable label for that
thing, format it according to what you would like to see in user interfaces.

A prefLabel can be provided separately from other labels, such as name. Instead of creating big lists of attributes used to refer to different
kinds of instance records (name, title, short title, given name, family name, etc...), the prefLabel of an instance record tells the system to
display the preferred label within the user interface.

So, when you describe an instance record of type person, you can describe this instance record with the prefLabel "Jim Pitman", along with
the attribute name "James W. Pitman". You may have as many label attributes as you wish, but only prefLabel is the preferred one chosen for
rendering in user interfaces.

description Exactly the same mindset applies to the use of the description attribute. Often systems want to have short descriptions of the instance records
they manage. However, instead of wanting to use a label to refer to an instance record, they want a description of this instance record.

If an instance record is of type person, for example, its description could be the short biography of that person. If the type of the instance
record is a document, then the description of this instance record could be its abstract.

The same logic behind the prefLabel attribute is applied to the description attribute.

prefURL Often systems can benefit from a reference to a Web page with additional information about an instance record. The use of the prefURL
attribute is also recommended for user interface generation purposes. prefURL by definition can not be a list or array.

prefURL is a URL reference to a Web page. It is the single URL chosen by the system for rendering a URL for a given thing within user
interfaces. For whatever instance or object you are considering, think of the assignment to prefURL as representing the "best" human-
viewable Web page available for it.

If an instance record is of type person, its prefURL can be his personal Web page, a Web page with his CV, biography, etc. If the instance
record is of type organization, its prefURL can be its enterprise Web page, etc.

Like the prefLabel, the notion of "preferred" and "alternative" Web pages (href) also applies.

Local or Global References
To make irON specifications easier to read, this specification allows either local or global references to the locations of the cross-referenced objects. This
section explains these conventions and how, when used, the references are resolved to their full address. The local ID of a record is local to its dataset.
The global ID of a record is a URI. Each global ID should be resolvable on the specified network.

Reference Resolution
We have two kind of ids:

1. ID of a Dataset
2. ID of an instance record

The ID of an instance record is a partial ID local to the dataset. The ID of the dataset is the base ID used to create a complete reference ID of the instance
records of the dataset. A full ID is created by concatenating the (base) ID of a dataset with the ID of an instance record. The full ID created has to be a valid
URI.

If the value of an attribute starts with "@", it means that the value is a reference to a local ID. If the value os an attribute starts with "@@", it means that the
value of the attribute refers to a global ID (URI). If the value refers to a local ID, it means that the record it references is in the same dataset. If the value
refers to a global ID, it means that this instance record can be local, or remote. If it is remote, its representation should be resolvable on the network
specified by the URI. Here is the figure describing this resolution mechanism:

10

Dataset Object
A Dataset is used to document information about the creation of instances records, and to link external resources to them (like the linkage and structure
schemas; more about this below).

A Dataset can be seen as an aggregation of instance records used to keep a reference between the instance records and their source (provenance). A
dataset can be split into multiple dataset slices. Each slice can be written in a separate file. Each slice of a dataset shares the same <id> of the dataset.

The dataset attribute introduces the Dataset object. This object is composed of multiple "string": "value" references. Each string refers to an attribute. Each
value can be a string, an array of strings, or an object. The meaning and usage of each attribute is described below.

Core Dataset Attributes
These are the core attributes recommended to be included with any dataset or dataset slice specification.

Attribute/Keyword Requirement Note Allowed
Type(s) Allowed Value(s) Definition

id Required Object String Identifier string used to
uniquely identify the dataset

prefLabel Recommended

If the prefLabel of a dataset is not specified, systems displaying
information about datasets will have a hard time figuring out how
to present information about the dataset to users. If such a case
happen, the system will have to fallback by displaying the ID of the
dataset, or some generic label.

Object String Human readable label used
to refer to this dataset. The
prefLabel is the preferred
label to use to refer to the
dataset and is the preferred
string used in the user
interface. If not specified, the
id is used as the label.

metaFile Optional

Not used if the actual metadata attributes are embedded in the
dataset specification

Object String [format: uri (as a
file reference)]

This is a reference to an
external record object; see
next table for suggested
dataset metadata.

The reference to the file has
to be a URI. If the file is local
to a file system, the "file:"
schema should be used. If
the file is on the Web, the
"http:" schema has to be
used, etc.

schema Optional Dataset String [format:
url]

URL reference where the
structure schema can be

11

The structure schema can be embedded in a dataset file or linked
from the dataset description.

If the structure schema is embedded and if a URL is specified, the
schema with the biggest version will be used by the system. If both
versions are the same, the system may use either one.

If no structure schema is accessible, the system will ignore the
specification.

embedded
schema linkage
definition
[object]
Array(String
[format: url])
Array(embedded
schema linkage
definition
[object])

retrieved from the Web.

Otherwise, a user can put
the description of the
schema in an object as the
value of this attribute.

More about this below.

linkage Optional

The schema linkage can be embedded in a dataset file or linked
from the dataset description.

If the schema linkage is embedded and if a URL is specified, the
schema with the largest version number (most recent) will be used
by the system. If both versions are the same, the system may use
either one.

If no schema linkage is accessible, the system ignores the
extended capabilities it gives.

Dataset String [format:
url]
embedded
schema linkage
definition
[object]
Array(String
[format: url])
Array(embedded
schema linkage
definition
[object])

URL reference where the
structure schema can be
retrieved from the Web.

Otherwise, a user can put
the description of the
schema in an object as the
value of this attribute.

More about this below.

Abstract Dataset Specification Example
Here is an example of an abstract dataset specification, with additional attributes beyond the core.

1. <dataset>
2. <id />
3. <prefLabel />
4. <description />
5. <source />
6. <createDate />
7. <creator />
8. <curator />
9. <maintainer />
10. <prefLabel />
11. <prefURL />
12. <ref />
13. <linkage />
14. <schema />
15. </dataset>

Adding Metadata
The metaFile attribute refers to a separate instance record file. (Alternatively, the same attributes used for metadata be embedded in the dataset
specification itself.) This dataset and slice design allows:

1. Reuse of the metadata (and its file) if desired
2. de minimis specification for a dataset slice as opposed to a fully specified dataset
3. A means for separately tracking dataset slice metadata and provenance from the metadata of the dataset itself
4. A simple dataset "wrapper" for dataset slices for adding or updating records to a dataset, and
5. A flexible and expandable metadata framework that piggybacks on the structure of an instance record.

Suggested Metadata Attributes
Note these attributes follow the general instance record object specification (see below), and may contain any arbitrary attributeName attributes as desired.
Alternatively, as noted, these same attributes and values may be embedded within the dataset specification above.

Attribute Requirement Note Allowed
Type(s) Cardinality Allowed

Value(s) Definition

id Required Object [1] primitive: Id Identifier string used to uniquely identify the dataset

prefLabel Recommended

If the prefLabel of a dataset is not
specified, systems displaying information
about datasets will have a hard time
figuring out how to present information
about the dataset to users. If such a case
happens, the system will has to fallback
by displaying the ID of the dataset, or
some generic label.

Object [0-1] primitive:
String

Human readable label used to refer to this dataset. The
prefLabel is the preferred label to use to refer to the
dataset and is the preferred string used in the user
interface. If not specified, the id is used as the label.

description Recommended Object [0-1] primitive:
String

Human readable description of the dataset.

source Optional Dataset [0-*] primitive: Id An attribute describing the source of the dataset. The
description of the record is available within the array of
records of the dataset.

createDate Optional Dataset [0-1] primitive:
Datetime

Date of the creation of the dataset

creator Optional Dataset [0-*] primitive: Id An attribute describing the creator of the dataset.
12

The description of the record is available within the
array of records of the dataset.

curator Optional Dataset [0-*] primitive: Id An attribute describing the curator of the dataset.

The description of the record is available within the
array of records of the dataset.

maintainer Optional Dataset [0-*] primitive: Id An attribute describing the maintainer of the dataset.

The description of the record is available within the
array of records of the dataset.

Instance Record Object
The recordList attribute refers to an array (irJSON) or unordered listing (irXML and commON) of instance records. An individual record is denoted by the
attribute record.

Note: The names of the attributes to be used in the instance records specification must be equivalent to the keywords shown unless otherwise indicated.

Instance Record Attributes

Attribute Allowed
Type(s) Cardinality Allowed

Value(s) Basis Description

id Object [1] primitive:
Id

irON Identifier string used to uniquely identify the record.

type Object [1-*] type:
Object

irON Class (type) of the record being described.

text Object [0-*] primitive:
String

BKN literal string value, typically part of a longer string of text which may be taken as the literal string
value. The value of "text" is typically intended to used as anchor text within html <a> tags in a
typical html rendering of the field. Plain text without any intended hyperlink may be provided as an
object in an array with a "text" property only. Text intended to be hyperlinked is provided as an
object with a "text" property as well as usually a "ref" or "href" property, and optionally any number
of additional properties.

prefLabel Object [0-1] primitive:
String

irON Human readable label used to refer to this instance. The prefLabel is the preferred label to use to
refer to the given instance and is the preferred string used in the user interface. If not specified,
the id is used as the label.

altLabel Object [0-*] primitive:
String

irON Human readable strings that are either synonyms, lingo, jargon, acronyms or other alternatives to
refer to the instance and its preferred label. altLabel may also be used to help map or
disambiguate instances.

metaFile Object [0-1] primitive:
Uri

irON This is a reference to an external record object; see next table for suggested dataset metadata.

The reference to the file has to be a URI. If the file is local to a file system, the "file:" schema should
be used. If the file is on the Web, the "http:" schema has to be used, etc.

description Object [0-1] primitive:
String

irON Human readable description of the record.

prefURL Object [0-1] primitive:
Url

irON Often systems can benefit from a reference to a Web page with additional information about an
record. The use of the prefURL attribute is also recommended for user interface generation
purposes.

prefURL is a URL reference to a Web page. For whatever instance or object you are considering,
think of the assignment to prefURL as representing the "best" human-viewable Web page available
for it.

If an record is of type person, its prefURL can be his personal Web page, a Web page with his CV,
biography, etc. If the record is of type organization, its prefURL can be its enterprise Web page,
etc.

Like the prefLabel, the notion of "preferred" and "alternative" Web pages (href) also applies.

href Object [0-*] primitive:
Url

irON href is a single or list of valid URIs that refers to or describes the current instance (or attribute, if it
is metadata being reified).

In the absence of a prefURL, the first href encountered may be substituted as the user interface
URL.

When there are multiple values provided for href in combination with a prefURL attribute, they act
as "see also" link references for the object.

uri Object [0-1] primitive:
Url

irON For some instances or objects there may be a "canonical" address (an URI, or if viewable in a
Webbrowser, an URL) that is the "official" reference to the thing. Sometimes this Web reference
may only be machine readable; sometimes that is lacking and a standard Web page is appropriate,
in which case uri is likely equivalent to the value for the prefURL attribute.

ref Object [0-1] Id irON A ref attribute refers to the local ID if the first character of the id is "@". A ref attribute refers to a
global ID (URI) if the first two characters of the id is "@@". If the ref attribute refer to the global ID
of an record, this record can be local, or remote (this means that the record referred by the ref

13

attribute is defined in another dataset).

Abstract Instance Record Specification Example
In pseudo-form, here is the set of core instance record attributes:

1. <record>
2. <id />
3. <type />
4. <prefLabel />
5. <description />
6. <attributeList />
7. <attribute1 />
8. <attribute2 />
9. <attribute3 />
10. <attributeX />
11. <prefLabel />
12. <prefURL />
13. <ref />
14. </attributeList>
15. </record>

Multiple <record> objects can be wrapped in the <recordList> attribute.

Structure Schema Object
The structure schema is used to describe the structural relationships amongst the class types and attributes used to describe instance records. This
schema aims to create basic taxonomies of types and attributes that can be used as a simple TBox to perform simple reasoning over the instance record
instances [4]. The structure schema is also used to define any structural features of a dataset: the class types and formats of the attributes used to
describe the instance records of the dataset.

Note 1: The names of the attributes to be used in the schema specification must be equivalent to the keywords shown unless otherwise indicated.

Note 2: To enable the use of more complex TBoxes [4] for the instances records that have been described, the schema linkage has to be used to link the
types and attributes of the instance records to the types and attributes of the more complex TBox format/language.

Note 3: At this time, the structure schema object is NOT available for the commON serialization. commON records can still be linked to schema (see next
section), but the schema specification must occur in a non-commON manner.

Structure Schema Attributes

Attribute/Keyword Requirement Allowed
Type(s) Cardinality Allowed

Value(s) Description

schema Required Dataset [1] type: Object This keyword introduces the schema object; that is, the structure schema
specification. In its entirety, this object defines the structure schema.

version Required Schema /
Linkage

[1] primitive:
String

This is a simple string defining the version of the schema. The version of a
schema is defined by a simple decimal number " X . Y " where X and Y are
greater than 0.

The version number is used to resolve potential reference ambiguities.

metaFile Optional Object [0-1] primitive:
Uri

This is a reference to an external record object; see next table for suggested
dataset metadata.

The reference to the file has to be a URI. If the file is local to a file system, the
"file:" schema should be used. If the file is on the Web, the "http:" schema has
to be used, etc.

typeList Optional Schema /
Linkage

[0-1] type: Object Each element of the object is a class type with the name of the type to
describe. The value of that attribute is an object. This attribute introduces an
array or listing of these types.

The object is a key-value pair with the attributes described below.

subTypeOf Optional Object [0-*] primitive:
String

This attribute states that the parent "parent type string" is a sub-type-of the
"value type string".

With the example above, this means: "article" is a sub type of "book".
If an array of types is specified, it means that the parent "parent type string" is
a sub-type-of the union of all the "value type string".

equivalentTypeTo Optional Object [0-*] primitive:
String

This attribute states that the parent "parent type string" is an equivalent-type-
to the "value type string".

If an array of types is specified, it means that the parent "parent type string" is
a equivalent-type-to the union of all the "value type string".

attributeList Optional Schema /
Linkage

[0-1] type: Object Each element of the object is an attribute with the name of the attribute to
describe. The value of that attribute is an object. This attribute introduces an
array or listing of these attributes.

The object is a key-value pair with the attributes described below.

14

subPropertyOf Optional Object [0-1] primitive:
String

This attribute states that a the parent "parent attribute string" is a sub-
property-of the "value attribute string".

With the example above, this means: "name" is a sub property of "label".
If an array of attributes is specified, it means that the parent "parent attribute
string" is a sub-property-of the union of all the "value attribute string".

equivalentPropertyTo Optional Object [0-1] primitive:
String

This attribute states that the parent "parent attribute string" is an equivalent-
property-to the "value attribute string".

If an array of attributes is specified, it means that the parent "parent attribute
string" is a equivalent-property-of the union of all the "value attribute string".

minValues Optional Object [0-1] primitive:
Integer

Specifies the minimum number of values that an attribute can refer to. If the
minValues is not specified, no minimal number of values is required.

maxValues Optional Object [0-1] primitive:
Integer

Specifies the maximum number of values that an attribute can refer to. In
irJSON, if a maxValues greater than 1 is specified, it means that the values of
that attribute will be introduced by a JSON array. If the maxValues is not
specified, no maximum number of values is required.

orderedValues Optional Object [0-1] primitive:
String

Specifies if the values of an attribute are ordered or not. Possible values: (1)
ordered, (2) unordered. If they are, the software that manage the dataset
as to keep the order of the values for that attribute in order. By default, the
value of the orderedValues attribute is unordered.

allowedType Optional Object [0-1] primitive:
String

The allowedType attribute is used to specify how an attribute can be used
used to describe a certain type of record. If the allowedType for an attribute
is "Person", then this means that this attribute can only be used to describe
records with a type "Person".

If the allowedType is not specified for an attribute of the structure schema,
we consider that it can be used to describe any type of record.

allowedValue Optional Object [0-1] primitive:
String

The allowedValue attribute is used to specify what type of value an attribute
can have. If the allowedValue for an attribute is "String", then this means that
the value of the property can only be a string literal. If the allowedValue for
an attribute is "Document", then this means that the value of this property
can only be a reference to a record of type "Document".

If the allowedValue is not specified for an attribute of the structure schema,
we consider that this attribute can have any value.

Cardinality of values can be introduced with the Array(...) processing
keyword. Array(String) means that the value of that attribute can be an array
of a specified value format or type

encoding Optional Object [0-1] primitive:
String

Name of the encoding used to encode the characters of a string primitive of
an allowed value of an attribute. By default, the encoding of a string primitive
is UTF-8.

language Optional Object [0-1] primitive:
String

Language identifier of a string primitive of an allowed value of an attribute. It
has to be available on the IANA language subtags registry. This
recommandation come from the W3C internalionalization task force. If the
language attribute is not specified, any language can be associated to the
string primitive.

Note 1: If a type is not specified the type is assumed as "any" and no validation can be performed against its values.

Note 2: The structure Schema is also used by the system to list all the class types and attributes used to describe instance records from a particular
dataset.

Abstract Structure Schema Specification Example

1. <schema>
2. <version />
3. <metaFile />
4. <typeList />
5. <someTypeName />
6. <subTypeOf />
7. <equivalentTypeTo />
8. <attributeList />
9. <someAttributeName />
10. <subAttributeOf />
11. <equivalentAttributeTo />
12. </schema>

Schema Linkage Object
The schema linkage object is a new kind of specification that links the types and attributes used to describe instance records to types and attributes of
other formats and languages used to describe data. The linkage schema leads to transformation rules to convert instance records in other formats. A set of
special attributes has been created to define a schema linkage as described in the table below.

Note: The names of the attributes to be used in the schema specification must be equivalent to the keywords shown unless otherwise indicated.

15

http://www.iana.org/assignments/language-subtag-registry
http://www.w3.org/International/questions/qa-lang-2or3

Schema Linkage Attributes

Attribute/Keyword Requirement Allowed
Type(s)

Cardinality Allowed
Value(s) Description

linkage Required Dataset [1] type: Object This keyword introduces the linkage object; the linkage specification
to a schema. In its entirety, this object defines the schema linkage.

version Required Schema /
Linkage

[1] primitive:
String

This is a simple string defining the version of the schema. The
version of a schema is defined by a simple decimal number " X . Y "
where X and Y are greater than 0.

The version number is used to resolve potential reference
ambiguities.

metaFile Optional Object [0-1] primitive:
Uri

This is a reference to an external record object; see next table for
suggested dataset metadata.

The reference to the file has to be a URI. If the file is local to a file
system, the "file:" schema should be used. If the file is on the Web,
the "http:" schema has to be used, etc.

linkedType Required Linkage [1] primitive:
Mime

Each schema linkage describe transformation rules between a
vocabulary of a certain format to another vocabulary of another
format. The linkedType attribute is used to specify the format of the
target vocabulary. In the examples below, notice the use of the MIME
types "application/rdf+xml" and "application/x-bibtex" as a value of
the linkedType attribute.

Parsers that will process these schema linkages have to know how to
transform the schema linkage transformation rules, according to the
linkedType MIME, to be able to properly serialize the rules in the
destination format.

prefixList Optional Linkage [0-1] type: Object Each element of the object is a "prefix:": "full-reference" key-value
pair. In the schema, if the "foo:" prefix is encountered at the
beginning of the value of the attribute mapTo , then the "foo:" prefix
is substituted by its "full-reference".

This is a way to make references smaller and easier for humans to
read.

attributeList Optional Schema /
Linkage

[0-*] type: Object A list of attributes used to describe the records of a dataset. They
can be defined such that they link to external format/language
attributes.

attributeName Optional (any attribute
identifier string allowed,
except for the reserved
keywords)

Object [0-*] type: Object Name of the attribute used to describe records. This attribute is
defined by a type attribute and an optional mapTo attribute.

mapTo Optional

If the mapTo attribute is
omitted, this means that
the attribute is only
specified for listing (listing
of attributes and types)
purposes.

Object [0-*] primitive:
String

A reference to the external format/language property that is identical
as the one used to describe the records of this dataset.

If the "foo:" prefix is used in the value of the mapTo attribute, it will be
replaced by the full identifier of the attribute.

If an array of values is specified, it means that the attributeName
equally maps to the properties referenced by each of the value.

typeList Optional Schema /
Linkage

[0-1] type: Object A list of types used to describe the records of a dataset. They can
be defined such that they link to external format/language types.

typeName Optional (any attribute
identifier string allowed,
except for the reserved
keywords)

Object [0-*] type: Object Name of the type used to describe records. This type is defined by
an optional mapTo attribute.

mapTo Optional Object [0-*] primitive:
String

A reference to the external format/language type that is identical as
the one used to describe the records of this dataset.

If the "foo:" prefix is used in the value of the mapTo attribute, it will be
replaced by the full identifier of the type.

If an array of values is specified, it means that the attributeName
equally maps to the properties referenced by each of the value.

addMapping Optional Object [0-1] type: Object Sometimes the mapping between two class types or between two
different formats is not straightforward. Sometimes we have to add
more key-value pairs to the linkage.

This attribute is used to add "attribute": "value" tuple to the class

16

types linkage transformation.

For example, let's say that we have a "phdthesis" class type in our
current schema, and that we only have a "bibo:Thesis" in the linked
schema. The fact that the "thesis" is a "phd" thesis is described as
an "attribute": "value" pair in the linked schema. The additional
description that we have to add to the transformation is the tuple:
"bibo:degree": "bibo_degrees:phd". Check the example #4 under the
BibJSON profile below for a complete example of the usage of the
addMapping attribute.

Linking a Dataset to a Structure Schema
There are two ways to link a dataset to a Linkage or structure Schema:

1. By using the linkage or schema to link a dataset to the description of these schemas.
2. By embedding the linkage or schema in specification.

Note: the list of "linkage" means that more than one linkage can be defined for a dataset. The goal is to enable data descriptors to be able to define
schema linkages for multiple formats and languages if needed.

Abstract Linkage Specification Example

1. <linkage>
2. <version />
3. <metaFile />
4. <linkedType />
5. <prefixList />
6. <somePrefix />
7. <attributeList />
8. <someAttributeName />
9. <mapTo />
10. <typeList />
11. <someTypeName />
12. <mapTo />
13. </linkage>

Processing Options
For the commON serialization only, some may prefer to present and manipulate their information with slightly different options for conventions. These
processing choices are invoked via the options keyword. The current ones availalble in irON are the following:

Attribute Description Default

listSeparator a single character used to separate items in a list
entry

|

listSeparatorEscape how the character gets escaped if it is present in a
value without separating a list

%7C

seqNum yes, no yes

The listSeparator attribute sets what the delimiter is for a list of values for a single attribute. The default value is the pipe characters ('|'), though these
characters are also possible: comma (','), semi-colon (';'), and squiggle ('~'). The data publisher has to specify a value for the listSeparatorEscape attribute
to tell the commON processor engine how to escape/unescape the list separator character.

The seqNum attribute is a Boolean (yes, no) value. If set to yes, a value is added to the instance record listings that enables all values to be sorted in
offline applications (especially spreadsheets for the commON serialization).

There are also a couple of instance record styles that are acceptable for commON, as described under its Profile below.

Augmenting Attributes with Metadata
The irON notation describes instance records using attribute/value key pairs. As we noted above, these can be mapped to subject-predicate-object triples
in RDF since the subject is implied by the instance record itself. This means that all instance records are described using attribute/value statements.
However, there are some cases where we could want to state something about these statements. These statements about statements are a form of
metadata (which is called "reification" in the RDF realm [5].)

A reification statement is a statement about a statement. Generally, you can view a reification statement as being some kind of "meta" information about
statements. However, since the "reification" terminology is a bit unusual for most people, we use "metadata" as a more understandable substitute.

Metadata can be used in multiple use-cases. It can be used to annotate information (information described using statements). It can be used to add specific
information about a statement such as the date when it has been stated, the creator of the statement, etc. It can be used to describe information about how
a specific statement should be rendered in some user interface. And, so forth.

One main metadata usecase for irON is its usage to specify how specific statements should be rendered in some user interfaces as described in the A Note
on User Interface Attributes section.

Description of Use Case
Another use case can be shown where the instance, for example, is a paper citation. This paper citation has multiple authors. Though the instance is about
the paper and not its authors, we may also want to state the institutional affiliation of each of the paper's multiple authors. We do this via the metadata
("reification") convention in irON.

17

Metadata Example

1. <record>
2. <id />
3. <prefLabel />
4. <affiliated />
5. <ref />
6. <prefLabel />
7. <prefURL />
8. </record>

For the example above, we have the abstract irON notation of a triple id-affiliated-ref where id is the ID of the subject record, and ref is a reference to the
object record. Both records are related by the affiliated attribute (or relation). The prefLabel and prefURL attributes are reification statements or metadata
about this triple statement (that is, they follow immediately after the ref reference).

If we take as the example that Bob-affiliated-SomeUniversity then the prefLabel could be the name of this affiliation to display in some user interface (Web
page), and the prefURL could be a reference to a Web page that talks about this affiliation between Bob and http://someUniversity.edu.

This metadata that further describes the primary attributes (affiliated, in this case) with additional information can be an easy shorthand and provide
immediately useful information to user interfaces (for example). This irON convention provides a mechanism, in essence, for expanding the depth and
richness of the instance characterizations.

Limitations to Reified Metadata
Unfortunately, you are not always assured that systems ingesting such reification statements will actually recognize them or, more often, store them
persistently. Further, once one begins describing metadata about primary attributes, the temptation is to nest those characterizations even further. If we can
describe the author's institution, why not the city that institution is located in or whether it is public or private?

For these reasons, it may be safer (though more cumbersome) to devote a separate instance record to each author and more fully describe the author
there. Still, when there is confidence in the processing application, it can be quite efficient to use the irON metadata shorthand.

The syntax for the irON attribute metadata shorthand differs by serialization.

Guidelines for Dataset Scoping
The irON notation is not applicable to all datasets nor all circumstances. However, there are a couple of guidelines that can extend the applicability and
usefulness of this notation.

First, try to limit your datasets to relatively similar "things". If your problem domain at hand involves much data and relationships, try to segregate or cluster
multiple contributing datasets according to the similarity of the instances (thus, people v products v organizations v localities v events, etc.).

Second, and related, try to scope each record within a dataset to the instance itself. References to external things or entities are fine and work great, but
try to define the attributes of those external things into their own datasets.

In these manners you can keep attributes listings bounded and manageable. You will also keep datasets more understandable and without requiring
massively dimensioned tables or structure. These considerations will also help bound the ability to create input templates with validation and controlled
vocabularies based on existing applications.

SUB-PART 1: irXML PROFILE
This sub-part of the irON specification describes the eXtensible Markup Language (XML) serialization, irXML.

Role and Use
The purpose of irXML is to provide a standard syntax and interchange format for the irON notation. Based on the eXtensible Markup Language (XML),
irXML provides a syntax and serialization well understood by most enterprise developers.

Via the shared irON notation, irXML also offers a pathway for moving appropriate XML data structures into either RDF, JSON or CVS. As such, irXML is likely
less an authoring environment as a notation for cross-format conversions.

The specifications provided herein can be used in separate, modular ways in multiple files, or combined. The linkage and structure schema provide useful
flexibility and extensibility to the basic XML notation.

The MIME type for irXML is application/iron+xml; files written in it should have the *.xml extension.

No Current Processor
Unlike irJSON and commON, which have available parsers and processors, irXML has not yet been committed to code. As a result, its specification, while
useful from an understanding and educational viewpoint, has not yet been tested with applications. This testing will likely result in changes.

We invite knowledgeable XML developers to tackle a conversion. The editors would be pleased to provide assistance to any group that wishes to
incorporate this option.

Differences from Generic irON
The entire vocabulary and set of modules and objects in irON are available and used by irXML. For all xxxList attributes, irXML treats them as unordered
lists, rather than arrays as in irJSON.

As a result, attributes for individual items must be used in irXML. These two specific irON attributes are attribute and record.

The options keyword is not used in irXML, nor its three attributes of listSeparator , listSeparatorEscape, and seqNum (it is advisable to avoid use of these
18

http://someuniversity.edu
http://en.wikipedia.org/wiki/Xml
http://en.wikipedia.org/wiki/Xml

terms so that conversions to commON are not confused).

Augmenting Attributes with Metadata
The method for adding metadata to primary instance attributes is in line with the standard irON notation:

1. <record>
2. <id />
3. <prefLabel />
4. <affiliated />
5. <ref />
6. <prefLabel />
7. <prefURL />
8. </record>

Altered Keyword Set
irXML has these vocabulary differences from the standard irON vocabulary:

Added Not Used

attribute options

record listSeparator

metaData listSeparatorEscape

seqNum

It is recommended not to use the Not Used terms in a irXML specification as they might pose conflicts with other irON serializations. In addition, the
meaning of format in irXML differs from irJSON in that the reference structure is the data types in XML Schema (XSD).

Summary of Conventions
1. irXML strictly conforms to the XML syntax
2. irON vocabulary keywords are reserved
3. All standard irON conventions and usages are followed
4. Listed items are provided as unordered lists, not arrays.
5. irXML files can be validated using XML schemas or DTDs
6. Any XML technologies can be used over irXML files such as XSL Transformations (XSLT)

XML File Structure
Each XML document is composed of a root dataset object. This root object wraps the standard dataset definition objects. The recordList element introduces
a list of record elements which are records belonging to the dataset.

1. <dataset>
2. ...
3. </dataset>
4.
5. <recordList >
6. <record />
7. ...
8. </recordList>

Dataset Object
The dataset keyword introduces the Dataset XML object. This element is composed of multiple sub-elements describing the attributes of a dataset. Each
sub-element refers to an attribute. Each value of each attribute element can be a literal (or something else if defined in a XML schema or a DTD), or a local
or global reference to another instance record. The meaning and usage of each attribute is as described for the generic irON notation.

Dataset Examples

Using the metaFile Attribute

Here is an irXML dataset example using the metaFile attribute.

1. <dataset>
2. <id>http://dataset.com/xyz/</id>
3.
4. <metaFile>http://dataset.com/abc/</metaFile>
5.
6. <linkage>http://dataset.com/schema/linkage.js</linkage>
7. <schema>http://dataset.com/schema/structure.js</schema>
8. </dataset>

Embedding the Metadata

Alternatively, rather than invoke a separate instance record file with the metadata information, it can also be included with the dataset specification:

1. dataset>
2. <id>http://dataset.com/xyz/</id>

19

http://www.w3.org/TR/xmlschema-2/

3. <linkage>http://dataset.com/schema/linkage.js</linkage>
4. <schema>http://dataset.com/schema/structure.js</schema>
5. </dataset>
6.
7. <recordList>
8. <record>
9. <id>http://dataset.com/xyz/</id>
10. <prefLabel>Author Data</prefLabel>
11. <description>Dataset bibliographic publications</description>
12. <source>
13. <ref>@ustanford</ref>
14. <metaData>
15. <prefURL>http://www.stanford.edu/</prefURL>
16. <prefLabel>Stanford University</prefLabel>
17. </metaData>
18. </source>
19. ...
20. </record>
21. </recordList>

Instance Record Object
The record attribute wraps the specific attributes for each instance object. The recordList attribute wraps one or more records.

Instance Record Example
Note: The names of the attributes to be used in the instance records specification must be equivalent to the keywords shown unless otherwise indicated:

1. <recordList>
2. <record>
3. <id>MR2463406</id>
4. <type>Article</type>
5. <prefLabel>Coloured loop-erased random walk on the complete graph</prefLabel>
6. <year>2008</year>
7. <number>6</number>
8. <volume>17</volume>
9. <mrclass>60G60 (05C80 60G50)</mrclass>
10. <pages>727--740</pages>
11. <href>http://dx.doi.org/10.1017/S0963548308009115</href>
12. <author>
13. <ref>@MRauthor:855220</ref>
14. <metaData>
15. <prefLabel>Jim Pitman</prefLabel>
16. <altLabel>Pitman, Jim</altLabel>
17. <prefURL>http://www.stat.berkeley.edu/~pitman/</prefURL>
18. </metaData>
19. </author>
20. <author>
21. <ref>@MRauthor:855220</ref>
22. <metaData>
23. <prefLabel>Alappattu, Jomy</prefLabel>
24. <href>http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Alappattu:Jomy.html</href>
25. </metaData>
26. </author>
27. <journal>
28. <ref>@some_journal_id_1</ref>
29. <metaData>
30. <prefLabel>Combin. Probab. Comput.</prefLabel>
31. <prefURL>http://journals.cambridge.org/action/displayJournal?jid=CPC</prefURL>
32. </metaData>
33. </journal>
34. </record>
35.
36. <record>
37. <id>some_journal_id_1</id>
38. <type>Journal</type>
39. <prefLabel>Combin. Probab. Comput.</prefLabel>
40. <issn>0963-5483</issn>
41. </record>
42. <record>
43. <id>MRauthor:855220</id>
44. <type>Person</type>
45. <prefLabel>Alappattu, Jomy</prefLabel>
46. </record>
47. <record>
48. <id>MRauthor:855220</id>
49. <type>Person</type>
50. <prefLabel>Jim Pitman</prefLabel>
51. <altLabel>Jim W. Pitman</altLabel>
52. </record>
53. </recordList>

Structure Schema Object
XML Schema, DTDs and any other XML technologies such as XML Transformations (XSLT) can be used to define schemas (and processing tools) for
describing instance records. They can be used to specify how attributes and type of objects should be described, using what attributes and what values.

The structure schema is used to describe the structural relationships amongst the types and attributes used to describe instances records, and is
introduced via the schema keyword element. This schema aims to create basic taxonomies of types and attributes that can be used as a simple TBox [4] to
perform simple reasoning over the instance record instances. The structure schema is also used to define any structural features of a dataset: the types

20

and formats of the attributes used to describe the instance records of the dataset. The typeList element refers to a list of class types. Each class type is a
XML element.

Structure Schema Example
Note 1: The names of the attributes to be used in the schema specification must be equivalent to the keywords shown unless otherwise indicated.

Note 2: To enable the use of more complex TBoxes for the instances records that have been described, the schema linkage (see next) has to be used to
link the types and attributes of the instance records to the types and attributes of the more complex TBox format/language.

1. <schema>
2. <version>0.1</version>
3.
4. <typeList>
5. <Article>
6. <subTypeOf>Book</subTypeOf>
7. </Article>
8. <Book>
9. <subTypeOf>Document</subTypeOf>
10. </Book>
11. <Document>
12. <subTypeOf>Thing</subTypeOf>
13. </Document>
14. </typeList>
15.
16. <attributeList>
17. <name>
18. <subPropertyOf>label</subPropertyOf>
19. <allowedValue>String</allowedValue>
20. <allowedType>Thing</allowedType>
21. </name>
22. <title>
23. <subPropertyOf>label</subPropertyOf>
24. <allowedValue>String</allowedValue>
25. <allowedType>Document</allowedType>
26. </title>
27.
28. </attributeList>
29.
30. </schema>

Linkage Object
The schema linkage is a new kind of specification that aims to link the class types and attributes used to describe instances records to class types and
attributes of other formats and languages; it is introduced via the linkage keyword element. The schema linkage leads to transformation rules to convert
instance records in other formats. A set of special attributes has been created to define this linkage as described in the table below.

Linkage Example
The names of the attributes to be used in the schema specification must be equivalent to the keywords shown unless otherwise indicated.

1. <linkage>
2.
3. <version>0.1</version>
4. <linkedType>application/rdf+xml</linkedType>
5.
6. <prefixList>
7. <bibo>http://purl.org/ontology/bibo/</bibo>
8. <dcterms>http://purl.org/dc/elements/1.1/</dcterms>
9. </prefixList>
10.
11. <attributeList>
12. <year>
13. <mapTo>dcterms:created</mapTo>
14. </year>
15. <author>
16. <mapTo>bibo:authorList</mapTo>
17. </author>
18. <isPartOf>
19. <mapTo>dcterms:isPartOf</mapTo>
20. </isPartOf>
21. </attributeList>
22.
23. <typeList>
24. <Article>
25. <mapTo>bibo:Article</mapTo>
26. </Article>
27. </typeList>
28.
29. </linkage>

Linking a Dataset to a Structure or Schema Linkage
There are two ways to link a dataset to a Linkage or structure Schema:

1. By using the linkage or schema to link a dataset to the description of these schemas.
2. By embedding the linkage or schema in an XML object.

Here are two examples demonstrating each possibility:

Case #1

21

1. <dataset>
2. <...> ... </...>
3.
4. <linkage>http://dataset.com/schema/linkage.js</linkage>
5. <schema>http://dataset.com/schema/structure.js</schema>
6. <dataset>

Case #2

1. <dataset>
2. <...> ... </...>
3.
4. <linkage>
5. <...> ... </ ...>
6.
7. <attributeList>
8. <...> ... </ ...>
9. </attributeList>
10.
11. <typeList>
12. <...> ... </ ...>
13. </typeList>
14.
15. </linkage>
16. <dataset>

Note: The list of "linkage" means that more than one linkage can be defined for a dataset. The goal is to enable data descriptors to be able to define
schema linkages for multiple formats and languages if needed.

Specific irXML Examples
Here is a set of examples that show you the irXML notation and vocabulary in action.

Example #1: First irXML Example
Here is an example of the description of a bibliographic record using irXML. This example demonstrates the publication of an article, in a book which is part
of a series.

Note: The irXML schema related to this example could be changed so that the information about the series, the book and the publisher are part of the
description of the article. This has to be decided by the data publisher (the one that creates the dataset).

1. <dataset>
2. <id>http://bibserver.berkeley.edu/datasets/</id>
3. <prefLabel>Publications of James Pitman</prefLabel>
4. <description>Publications of James Pitman</description>
5. <createDate>01/01/2008</createDate>
6.
7. <source>
8. <ref>@ustanford</ref>
9. <metaData>
10. <prefLabel>Stanford University</prefLabel>
11. <prefURL>http://www.stanford.edu/</prefURL>
12. </metaData>
13. </source>
14.
15. <creator>
16. <ref>@jpitman</ref>
17. <metaData>
18. <prefLabel>Jim Pitman</prefLabel>
19. <prefURL>http://www.stat.berkeley.edu/~pitman/</prefURL>
20. </metaData>
21. </creator>
22.
23. <linkage>http://dataset.com/schema/linkage.js</linkage>
24. <schema>http://dataset.com/schema/structure.js</schema>
25. </dataset>
26.
27. <recordList>
28. <record>
29. <id>MR2276901</id>
30. <type>Article</type>
31. <prefLabel>Two recursive decompositions of Brownian bridge related to the asymptotics of random

mappings</prefLabel>
32. <description>Aldous and Pitman (1994) studied asymptotic distributions, as n tends to infinity, of various

functionals of a uniform random mapping of a set of n elements, by constructing a mapping-walk and showing these mapping-
walks converge weakly to a reflecting Brownian bridge. Two different ways to encode a mapping as a walk lead to two
different decompositions of the Brownian bridge, each defined by cutting the path of the bridge at an increasing sequence of
recursively defined random times in the zero set of the bridge. The random mapping asymptotics entail some remarkable
identities involving the random occupation measures of the bridge fragments defined by these decompositions. We derive
various extensions of these identities for Brownian and Bessel bridges, and characterize the distributions of various path
fragments involved, using the theory of Poisson processes of excursions for a self-similar Markov process whose zero set is
the range of a stable subordinator of index between 0 and 1.</description>

33. <year>2006</year
34. <pages>269--303</pages>
35. <arxiv>math.PR/0402399</arxiv>
36. <keywords>Path decomposition</keywords>
37. <keywords>Path rearrangement</keywords>
38. <keywords>Random mapping</keywords>
39. <keywords>Combinatorial stochastic process</keywords>
40. <bibnumer>117</bibnumer>
41. <volume>1874</volume>
42. <address>Berlin</address>
43. <mrclass>60C05 (60J65)</mrclass>

22

44. <author>
45. <metaData>
46. <prefLabel>Aldous, David</prefLabel>
47. </metaData>
48. </author>
49. <author>
50. <ref>@jpitman</ref>
51. <metaData>
52. <prefLabel>Jim Pitman</prefLabel>
53. <prefURL>http://www.stat.berkeley.edu/~pitman/</prefURL>
54. </metaData>
55. </author>
56. <isPartOf>
57. <ref>@book_id</ref>
58. <metaData>
59. <prefLabel>In memoriam Paul-André Meyer: Séeminaire de Probabilités</prefLabel>

60. </metaData>
61. </isPartOf>
62. </record>
63.
64. <record>
65. <id>jpitman</id>
66. <type>Person</type>
67. <prefLabel>Jim Pitman</prefLabel>
68. <prefURL>http://www.stat.berkeley.edu/~pitman/</prefURL>
69.
70. <name>Jim Pitman</name>
71. <homepage>http://www.stat.berkeley.edu/~pitman/</homepage>
72. </record>
73.
74. <record>
75. <id>ustanford</id>
76. <type>Organization</type>
77. <prefLabel>Stanford University</prefLabel>
78. <prefURL>http://www.stanford.edu/</prefURL>
79. </record>
80.
81. <record>
82. <id>book_id</id>
83. <type>Book</type>
84. <prefLabel>In memoriam Paul-Andrée Meyer: Séminaire de Probabilités</prefLabel>
85.
86. <title>In memoriam Paul-Andrée Meyer: Séminaire de Probabilités</title>
87.
88. <editor>
89. <metaData>
90. <prefLabel>Michel Émery</prefLabel>
91. <metaData>
92. </editor>
93. <editor>
94. <metaData>
95. <prefLabel>Marc Yor</prefLabel>
96. <metaData>
97. </editor>
98.
99. <isPartOf>
100. <ref>@series_id</ref>
101. <metaData>
102. <prefLabel>Lecture Notes in Math.</prefLabel>
103. <metaData>
104. </isPartOf>
105. </record>
106.
107. <record>
108. <id>series_id</id>
109. <type>Series</type>
110. <prefLabel>Lecture Notes in Math.</prefLabel>
111. <volume>1874</volume>
112. <publisher>
113. <metaData>
114. <prefLabel>Springer</prefLabel>
115. <metaData>
116. </publisher>
117. </record>
118.
119. </recordList>
120.

Converting irXML into RDF
This section is not yet drafted. It will explain how a irXML-to-RDF converter can be written, and how it is expected to behave. We will explain how a linkage
schema can be used to create transformation rules that will take irXML statements and then create RDF triples by applying the rules defined in the linkage
schema.

SUB-PART 2: irJSON PROFILE
This sub-part of the irON specification describes the JavaScript Object Notation (JSON) serialization, irJSON. Its use and genesis was spurred by
development of the BibJSON specification for the Bibliographic Knowledge Network project [6]. Technically speaking, BibJSON is a specific instantiation of
the irJSON specification.

23

http://en.wikipedia.org/wiki/JSON

Role and Use
The purpose of irJSON is to enable datasets, instance records, data structures and the linkages between them to be specified using the JavaScript Object
Notation (JSON). JSON is the native data input form for JavaScript Web applications and widgets and has become a common data exchange format and
framework in its own right. JSON is a little cumbersome to write by hand, but is readily supported by all leading scripting languages with many libraries,
validators, converters and editors extant for reading and ingesting JSON data.

Even the simplest key-value pair representation of an instance record needs some syntactic grammar and some interpretation conventions. In irJSON, the
full range of the JSON syntax is used to serialize instance records. Some conventions are added along with the vocabulary to properly interpret the JSON
syntax in the context of an irON instance record.

The specifications provided herein can be used in separate, modular ways in multiple files, or combined. The linkage and structure schema provide
unlimited flexibility and extensibility to the basic JSON notation.

The MIME type for irJSON is application/iron+json; files written in it should have the *.js extension.

Differences from Generic JSON
The full range of the JSON syntax is used to serialize instance records. Some conventions are added along with the vocabulary to properly interpret the
JSON syntax. This means that all the JSON rules and conventions are applied here: the data structures available, the encoding practices, etc. However,
there are some terminology differences between the two notations. Here is a table that reifies the meaning of each concept:

irJSON Vocabulary Term JSON term
string string
array array
object object
record (instance record) object
attribute name

Though not an official part of the JSON notation, the schema logic within irJSON also builds and is consistent with the emerging JSON Schema effort. JSON
Schema is a specification for a JSON-based format for defining the structure of JSON data. Furthermore, the formats supported by irJSON under the format
attribute are the same as those specified for JSON Schema.

Properly formatted irJSON files will validate with the standard JSON validator, JSLint. Though there are JSON Schema validators also available, none of
those are yet at a sufficient state of maturity to validate irJSON schema.

Differences from Generic irON
The entire vocabulary and set of modules and objects in irON are available and used by irJSON. For all xxxList attributes, irJSON treats them as objects with
arrays, the same as JSON.

The options keyword is not used in irJSON, nor its three attributes of listSeparator , listSeparatorEscape, and seqNum (it is advisable to avoid use of these
terms so that conversions to commON are not confused).

Summary of Conventions
1. irJSON strictly conforms to the JSON syntax
2. irON vocabulary keywords are reserved
3. All standard irON conventions and usages are followed.

JSON File Structure
Each JSON document is composed of a root JSON object. This root object is composed of a “dataset” string (attribute) and a “recordList” string (attribute).
The "dataset" attribute introduces the Dataset object. The "recordList" attribute introduce an array of instance record objects.

1. {
2. "dataset": {
3. "...": "..."
4. },
5. "recordList": [
6. {
7. "...": "..."
8. }
9.]
10. }

Dataset Object
The "dataset" attribute introduces the Dataset JSON object. This object is composed of multiple "string": "value" references. Each string refers to an
attribute. Each value can be a string an array or an object. The meaning and usage of each attribute is as described for the generic irON notation.

Dataset Examples

Using the metaFile Attribute

Here is an irJSON dataset example using the meta attribute:

1. {
2. "dataset": {
3. "id": "http://dataset.com/xyz/",
4.

24

http://en.wikipedia.org/wiki/JSON
http://groups.google.com/group/json-schema
http://groups.google.com/group/json-schema/web/json-schema-possible-formats
http://www.jslint.com/
http://groups.google.com/group/json-schema/web/json-schema-possible-formats

5. "metaFile":"http://dataset.com/abc/",
6.
7. "linkage": "http://dataset.com/schema/linkage.js",
8. "schema": "http://dataset.com/schema/structure.js"
9. }
10. }

Embedding the Metadata

Alternatively, rather than invoke a separate instance record file with the metadata information, it can also be included with the dataset specification directly:

1. {
2. "dataset": {
3. "id": "http://dataset.com/xyz/",
4.
5. "linkage": "http://dataset.com/schema/linkage.js",
6. "schema": "http://dataset.com/schema/structure.js"
7. },
8. "recordList": [
9. {
10. "id": "http://dataset.com/xyz/",
11.
12. "prefLabel": "Author Data",
13. "description": "Dataset bibliographic publications",
14. "source": {
15. "prefLabel": "Stanford University",
16. "prefURL": "http://www.stanford.edu/",
17. "ref": "@ustanford"
18. },
19. "createDate": "01/01/2009",
20. "creator": {
21. "prefLabel": "Jim Pitman",
22. "prefURL": "http://www.stat.berkeley.edu/~pitman/",
23. "ref": "@jpitman"
24. },
25. "curator": {
26. "...": "..."
27. },
28. "maintainer": {
29. "...": "..."
30. },
31.
32. }
33.]
34. }

Instance Record Object
The recordList attribute refers to an array of instance record(s). Each instance record is a JSON object.

Instance Record Example
Note: The names of the attributes to be used in the instance records specification must be equivalent to the keywords shown unless otherwise indicated.

1. {
2. "recordList": [
3. {
4. "id": "MR2463406",
5. "type": "Article",
6. "prefLabel": "Coloured loop-erased random walk on the complete graph",
7. "year": "2008",
8. "number": "6",
9. "volume": "17",
10. "mrclass": "60G60 (05C80 60G50)",
11. "pages": "727--740",
12. "href": "http://dx.doi.org/10.1017/S0963548308009115",
13. "author": [
14. {
15. "prefLabel": ["Pitman, Jim", "Jim Pitman"],
16. "prefURL": "http://www.stat.berkeley.edu/~pitman/",
17. "ref": "@MRauthor:855220"
18. },
19. {
20. "prefLabel": "Alappattu, Jomy",
21. "href": "http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Alappattu:Jomy.html",
22. "ref": "@MRauthor:855220"
23. }
24.],
25. "journal": [
26. {
27. "prefLabel": "Combin. Probab. Comput.",
28. "prefURL": "http://journals.cambridge.org/action/displayJournal?jid=CPC",
29. "ref": "@some_journal_id_1"
30. }
31.]
32. },
33. {
34. "id": "some_journal_id_1",
35. "type": "Journal",
36. "prefLabel": "Combin. Probab. Comput.",
37. "issn": "0963-5483"
38. },
39. {
40. "id": "MRauthor:855220",

25

41. "type": "Person",
42. "prefLabel": "Alappattu, Jomy"
43. },
44. {
45. "id": "MRauthor:855220",
46. "type": "Person",
47. "prefLabel":"Jim Pitman",
48. "altLabel":"Jim W. Pitman"
49. }
50.]
51. }

Structure Schema Object
JSON schema can be used to define schemas for describing instance records (they also have a reference to common data type formats).They can be used
to specify how attributes and type of objects should be described, using what attributes and what values.

The structure schema is used to describe the structural relationships amongst the types and attributes used to describe instances records. This schema
aims to create basic taxonomies of types and attributes that can be used as a simple TBox [4] to perform simple reasoning over the instance record
instances. The structure schema is also used to define any structural features of a dataset: the types and formats of the attributes used to describe the
instance records of the dataset.

The typeList attribute refers to an array of class types. Each class type is a JSON object.

Structure Schema Example
Note 1: The names of the attributes to be used in the schema specification must be equivalent to the keywords shown unless otherwise indicated.

Note 2: To enable the use of more complex TBoxes for the instances records that have been described, the schema linkage (see next) has to be used to
link the types and attributes of the instance records to the types and attributes of the more complex TBox format/language.

1. {
2. "schema": {
3. "version": "0.1",
4.
5. "typeList": {
6. "Article": {
7. "subTypeOf": "Book"
8. },
9. "Book": {
10. "subTypeOf": "Document"
11. },
12. "Document": {
13. "subTypeOf": "Thing"
14. }
15. },
16.
17. "attributeList": {
18. "name": {
19. "subPropertyOf": "label",
20. "allowedValue": "String"
21. "allowedType": "Thing"
22. },
23.
24. "title": {
25. "subPropertyOf": "label",
26. "AlowedValue": "String"
27. "allowedType": "Document"
28. }
29. }
30. }

Linkage Object
The schema linkage is a new kind of specification that aims to link the class types and attributes used to describe instances records to class types and
attributes of other formats and languages. The schema linkage leads to transformation rules to convert instance records in other formats. A set of special
attributes has been created to define this linkage as described in the table below. In the example 3 and 4 below, we are demonstrating some linkage
between a dataset and external formats such as BibTeX and RDFS/OWL ontologies properties and types.

Linkage Example
Note: The names of the attributes to be used in the schema specification must be equivalent to the keywords shown unless otherwise indicated.

1. {
2. "linkage": {
3. "version": "0.1",
4. "linkedType": "application/rdf+xml",
5.
6. "prefixList": {
7. "bibo": "http://purl.org/ontology/bibo/",
8. "dcterms": "http://purl.org/dc/elements/1.1/"
9. },
10.
11. "attributeList": {
12. "year": {
13. "mapTo": "dcterms:created"
14. },
15.
16. "author": {
17. "mapTo": "bibo:authorList"
18. },

26

http://json-schema.org/
http://groups.google.com/group/json-schema/web/json-schema-possible-formats

19.
20. "isPartOf": {
21. "mapTo": "dcterms:isPartOf"
22. }
23. },
24.
25. "typeList": {
26. "Article": {
27. "mapTo": "bibo:Article"
28. }
29. }
30. }
31. }

Linking a Dataset to a Structure or Schema Linkage
There are two ways to link a dataset to a Linkage or structure Schema:

1. By using the linkage or schema to link a dataset to the description of these schemas.
2. By embedding the linkage or schema in a JSON object

Here are two examples demonstrating each possibility:

Case #1

1. {
2. "dataset": {
3. "...": "...",
4. "linkage": "http://dataset.com/schema/linkage.js",
5. "schema": "http://dataset.com/schema/structure.js"
6. }
7. }

Case #2

1. {
2. "dataset": {
3. "...": "...",
4. "linkage":
5. {
6. "...": "..."
7. }
8. }
9. }

Note: the list of "linkage" means that more than one linkage can be defined for a dataset. The goal is to enable data descriptors to be able to define
schema linkages for multiple formats and languages if needed.

Specific irJSON Examples
Here is a set of examples that show you the irJSON notation and vocabulary in action.

Example #1: Bibliographic Record
Here is an example of the description of a bibliographic record using irJSON. This example demonstrates the publication of an article, in a book which is part
of a series.

Note: the irJSON schema related to this example could be changed so that the information about the series, the book and the publisher are part of the
description of the article. This has to be decided by the data publisher (the one that creates the dataset).

1. {
2. "dataset": {
3. "id": "http://bibserver.berkeley.edu/datasets/",
4. "prefLabel": "Publications of James Pitman",
5. "description": "Publications of James Pitman",
6. "source": {
7. "prefLabel": "Stanford University",
8. "prefURL": "http://www.stanford.edu/",
9. "ref": "@ustanford"
10. },
11.
12. "createDate": "01/01/2008",
13. "creator": {
14. "prefLabel": "Jim Pitman",
15. "prefURL": "http://www.stat.berkeley.edu/~pitman/",
16. "ref": "@jpitman"
17. },
18.
19. "linkage": "http://dataset.com/schema/linkage.js",
20. "schema": "http://dataset.com/schema/structure.js"
21. },
22.
23. "recordList": [
24. {
25. "id": "MR2276901",
26. "type": "Article",
27. "prefLabel": "Two recursive decompositions of Brownian bridge related to the asymptotics of random

mappings",
28. "description": "Aldous and Pitman (1994) studied asymptotic distributions, as n tends to infinity, of

various functionals of a uniform random mapping of a set of n elements, by constructing a mapping-walk and showing these
mapping-walks converge weakly to a reflecting Brownian bridge. Two different ways to encode a mapping as a walk lead to two
different decompositions of the Brownian bridge, each defined by cutting the path of the bridge at an increasing sequence of

27

recursively defined random times in the zero set of the bridge. The random mapping asymptotics entail some remarkable
identities involving the random occupation measures of the bridge fragments defined by these decompositions. We derive
various extensions of these identities for Brownian and Bessel bridges, and characterize the distributions of various path
fragments involved, using the theory of Poisson processes of excursions for a self-similar Markov process whose zero set is
the range of a stable subordinator of index between 0 and 1.",

29. "year": "2006",
30. "pages": "269--303",
31. "arxiv": "math.PR/0402399",
32. "keywords": [
33. "Path decomposition",
34. "Path rearrangement",
35. "Random mapping",
36. "Combinatorial stochastic process"
37.],
38. "bibnumer": "117",
39. "volume": "1874",
40. "address": "Berlin",
41. "mrclass": "60C05 (60J65)",
42. "author": [
43. {
44. "prefLabel": "Aldous, David"
45. },
46. {
47. "prefLabel": "Pitman, Jim",
48. "prefURL": "http://www.stat.berkeley.edu/~pitman/",
49. "ref": "@jpitman"
50. }
51.],
52. "isPartOf": [
53. {
54. "prefLabel": "In memoriam Paul-André Meyer: Séeminaire de Probabilités",
55. "ref": "@book_id"
56. }
57.]
58. },
59. {
60. "id": "jpitman",
61. "type": "Person",
62. "prefLabel":"Jim Pitman",
63. "homepage": "http://www.stat.berkeley.edu/~pitman/"
64. },
65. {
66. "id": "ustanford",
67. "type": "Organization",
68. "prefLabel": "Stanford University",
69. "homepage": "http://www.stanford.edu/"
70. },
71. {
72. "id": "book_id",
73. "type": "Book",
74. "title": "In memoriam Paul-Andrée Meyer: Séminaire de Probabilités",
75. "editors": [
76. {
77. "prefLabel": "Michel Émery"
78. },
79. {
80. "prefLabel": "Marc Yor"
81. }
82.],
83. "isPartOf": [
84. {
85. "prefLabel": "Lecture Notes in Math.",
86. "ref": "@series_id"
87. }
88.]
89. },
90. {
91. "id": "series_id",
92. "type": "Series",
93. "title": "Lecture Notes in Math.",
94. "volume": "1874",
95. "publisher": [
96. {
97. "prefLabel": "Springer"
98. }
99.]
100. }
101.]
102. }

Example #2: Best Buy Mp3 Player

1. {
2. "dataset": {
3. "id": "http://stores.bestbuy.com/",
4. "prefLabel": "BestBuy dataset of goods",
5. "source": {
6. "prefLabel": "Best Buy",
7. "prefURL": "http://bestbuy.com"
8. },
9.
10. "createDate": "01/01/2009",
11. "creator": {
12. "prefLabel": "Best Buy",
13. "prefURL": "http://bestbuy.com"
14. },

28

15.
16. "linkage": "http://dataset.com/schema/linkage.js",
17. "schema": "http://dataset.com/schema/structure.js"
18. },
19.
20. "recordList": [
21. {
22. "id": "sku8773062",
23. "type": "mp3-player",
24. "prefLabel": "Apple® - iPod nano® 16GB* MP3 Player",
25. "price": "199.99",
26. "color": "black",
27. "sku": "8773062",
28. "model": "MB918LL/A",
29. "catalogWebPage": "http://www.bestbuy.com/site/olspage.jsp?skuId=8773062&type=product&id=1204332007749",
30. "availableInRetailStore": [
31. {
32. "prefLabel": "Colorado Sprg Ii CO (Store 298)",
33. "prefURL": "http://stores.bestbuy.com/298/",
34. "ref": "@298"
35. }
36.]
37. },
38. {
39. "id": "298",
40. "type": "retail-store",
41. "prefLabel": "Colorado Sprg Ii CO (Store 298)",
42. "address": "7675 N Academy Blvd Market At Chapel Hill",
43. "state": "CO",
44. "postal-code": "CO 80920",
45. "phone": "719-593-0414"
46. }
47.]
48. }

Example #3: A irJSON Bibliographic Vocabulary to BibTeX Schema Linkage
Here is an example of a schema linkage. This schema describes the relationships between a irJSON bibliographic vocabulary and BibTeX.

1. {
2. "linkage": {
3. "version": "0.1",
4. "linkedType": "application/x-bibtex",
5.
6. "attributeList": {
7. "address": {
8. "mapTo": "address"
9. },
10. "author": {
11. "mapTo": "author"
12. },
13. "title": [
14. {
15. "mapTo": "booktitle"
16. },
17. {
18. "mapTo": "title"
19. }
20.],
21. "chapter": {
22. "mapTo": "chapter"
23. },
24. "ref": {
25. "mapTo": "crossref"
26. },
27. "edition": {
28. "mapTo": "edition"
29. },
30. "editor": {
31. "mapTo": "editor"
32. },
33. "eprint": {
34. "mapTo": "eprint"
35. },
36. "howpublished": {
37. "mapTo": "howpublished"
38. },
39. "institution": {
40. "mapTo": "institution"
41. },
42. "journal": {
43. "mapTo": "journal"
44. },
45. "key": {
46. "mapTo": "key"
47. },
48. "month": {
49. "mapTo": "month"
50. },
51. "note": {
52. "mapTo": "note"
53. },
54. "number": {
55. "mapTo": "number"
56. },
57. "organization": {

29

http://www.bibtex.org/

58. "mapTo": "organization"
59. },
60. "pages": {
61. "mapTo": "pages"
62. },
63. "publisher": {
64. "mapTo": "publisher"
65. },
66. "school": {
67. "mapTo": "school"
68. },
69. "series": {
70. "mapTo": "series"
71. },
72. "type": {
73. "mapTo": "type"
74. },
75. "href": {
76. "type": "string",
77. "mapTo": "href"
78. },
79. "volume": {
80. "mapTo": "volume"
81. },
82. "year": {
83. "mapTo": "year"
84. }
85. },
86.
87. "typeList": {
88. "article": {
89. "mapTo": "article"
90. },
91. "book": {
92. "mapTo": "book"
93. },
94. "booklet": {
95. "mapTo": "booklet"
96. },
97. "conference": {
98. "mapTo": "conference"
99. },
100. "inbook": {
101. "mapTo": "inbook"
102. },
103. "incollection": {
104. "mapTo": "incollection"
105. },
106. "inproceedings": {
107. "mapTo": "inproceedings"
108. },
109. "manual": {
110. "mapTo": "manual"
111. },
112. "mastersthesis": {
113. "mapTo": "mastersthesis"
114. },
115. "misc": {
116. "mapTo": "misc"
117. },
118. "phdthesis": {
119. "mapTo": "phdthesis"
120. },
121. "proceedings": {
122. "mapTo": "proceedings"
123. },
124. "techreport": {
125. "mapTo": "techreport"
126. },
127. "unpublished": {
128. "mapTo": "unpublished"
129. }
130. }
131. }
132. }

Example #4: A irJSON Bibliographic Vocabulary to RDF Schema Linkage
This other example demonstrates how we can create another linkage file to link this irJSON Bibliographic Vocabulary attributes and types to RDFS/OWL
ontologies properties and classes. This example shows the flexibility of a irJSON linkage file and how it can be used to link the same simple instance record
vocabulary to different format/languages.

1. {
2. "linkage": {
3. "version": "0.1",
4. "linkedType": "application/rdf+xml",
5.
6. "prefixList": {
7. "bibo": "http://purl.org/ontology/bibo/",
8. "dcterms": "http://purl.org/dc/elements/1.1/",
9. "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
10. "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
11. "bibo_degrees": "http://purl.org/ontology/bibo/degrees/",
12. "address": "http://schemas.talis.com/2005/address/schema#",
13. "bkn": "http://purl.org/ontology/bkn#"
14. },

30

15.
16. "attributeList": {
17. "address": {
18. "mapTo": "address:localityName"
19. },
20. "author": {
21. "mapTo": "dcterms:creator"
22. },
23. "title": {
24. "mapTo": "dcterms:title"
25. },
26.
27. "chapter": {
28. "mapTo": "bibo:chapter"
29. },
30. "ref": {
31. "mapTo": "rdf:resource"
32. },
33. "edition": {
34. "mapTo": "bibo:edition"
35. },
36. "editor": {
37. "mapTo": "bibo:editor"
38. },
39. "eprint": {
40. "mapTo": "rdfs:seeAlso"
41. },
42. "howpublished": {
43. "mapTo": "dcterms:publisher"
44. },
45. "institution": {
46. "mapTo": "dcterms:contributor"
47. },
48. "journal": {
49. "mapTo": "dcterms:isPartOf"
50. },
51. "key": {
52. "mapTo": "foo:bar"
53. },
54. "month": {
55. "mapTo": "dcterms:date"
56. },
57. "note": {
58. "mapTo": "skos:note"
59. },
60. "number": {
61. "mapTo": "bibo:number"
62. },
63. "organization": {
64. "mapTo": "bibo:organizer"
65. },
66. "pages": {
67. "mapTo": "bibo:pages"
68. },
69. "publisher": {
70. "mapTo": "dcterms:publisher"
71. },
72. "school": {
73. "mapTo": "rdfs:seeAlso"
74. },
75. "series": {
76. "mapTo": "dcterms:isPartOf"
77. },
78. "type": {
79. "mapTo": "rdf:type"
80. },
81. "href": {
82. "mapTo": "bkn:url"
83. },
84. "volume": {
85. "mapTo": "bibo:volume"
86. },
87. "year": {
88. "mapTo": "dcterms:date"
89. }
90. },
91.
92. "typeList": {
93. "article": {
94. "mapTo": "bibo:Article"
95. },
96. "book": {
97. "mapTo": "bibo:Book"
98. },
99. "booklet": {
100. "mapTo": "bibo:Booklet"
101. },
102. "conference": {
103. "mapTo": "bibo:Conference"
104. },
105. "inbook": {
106. "mapTo": "bibo:Chapter"
107. },
108. "incollection": {
109. "mapTo": "bibo:BookSection"
110. },
111. "inproceedings": {
112. "mapTo": "bibo:Article"

31

113. },
114. "manual": {
115. "mapTo": "bibo:Manual"
116. },
117. "mastersthesis": {
118. "mapTo": "bibo:Thesis",
119. "addMapping": {
120. "bibo:degree": "bibo_degrees:ma"
121. }
122. },
123. "misc": {
124. "mapTo": "bibo:Document"
125. },
126. "phdthesis": {
127. "mapTo": "bibo:Thesis",
128. "addMapping": {
129. "bibo:degree": "bibo_degrees:phd"
130. }
131. },
132. "proceedings": {
133. "mapTo": "bibo:Proceedings"
134. },
135. "techreport": {
136. "mapTo": "bibo:Report"
137. },
138. "unpublished": {
139. "mapTo": "bibo:Document",
140. "addMapping": {
141. "bibo:status": "bibo:unpublished"
142. }
143. }
144. }
145. }
146. }

Converting irJSON into RDF
This section is not yet drafted. It will explain how a irJSON-to-RDF converter can be written, and how it is expected to behave. We will explain how a linkage
schema can be used to create transformation rules that will take irJSON statements and then create RDF triples by applying the rules defined in the linkage
schema.

SUB-PART 3: commON PROFILE
This sub-part of the irON specification describes the comma-delimited or comma-separated values (CSV) serialization, commON.

Role and Use
The most common data authoring environment in the world is the spreadsheet. Spreadsheets are a ubiquitous tool for knowledge workers. And, CSV
(comma-separated values), a very old file format that predates personal computers but was embraced by Microsoft as a spreadsheet representation, is a
nearly ubiquitous data exchange format that is also easily read by humans.

Most simple data can be developed and provided as text datasets based on attribute-value pairs (also known as key-value pairs and many other variants)
[2]. In spreadsheets, a tabular view of similar "things" (instances) can be readily presented where the records of those instances represent the rows in the
table or spreadsheet, the attributes or properties or "fields" describing those things are listed in the columns. Indeed, this basic framework is also what is
used in relational data tables.

When exported, CSV only contains the cell data values from a spreadsheet. While this has the disadvantage of losing formatting, formulas and other
niceties of spreadsheets in their native form, it also makes the data exchanged clean and relatively uniform. During data development and preparation the
spreadsheet can be used in all of its native capabilities to provide data validation, sorting, formatting, cell referencing, calculations of (say) totals and
subtotals, etc. This means that templates with useful prompts and controlled vocabularies and rapid editing and entry functions can be quickly developed
for a spreadsheet, then followed by clean data export using CSV for use by other tools and for data federation.

Moreover, with just a little bit of extra specification, the staging of this data and then its export using CSV can also achieve broader operability. These are
the rationales for commON.

The purpose of commON it to provide an easy data authoring and dataset creation environment for knowledge workers. By following a few conventions and
using common spreadsheet tools, knowledge workers with domain knowledge but little or no programming and scripting language skills can rapidly and
effectively create small datasets (databases) or can extract information from existing spreadsheets for integration and interoperability.

In keeping with the irON notation, commON consists of a number of modules that define the various aspects of a full specification. These modules may be
specified in a single CSV file or in multiple separate files. The start of a module is signaled by a process-based reserved keyword (see below) that the
parser recognizes.

CSV as generally used is "schema-less". In order to embrace the irON notation, vocabulary and structure, commON introduces a number of conventions
that must be followed in order to achieve the irON objective of staging data for RDF interoperability.

The MIME type for irJSON is application/iron+csv.

Differences from Generic CSV
Though in use for decades, CSV only received a formal MIME-type specification in 2005 [7]. CSV has relatively few conventions and limited syntax, as
explained in [7].

commON is fully compliant with RFC 4180 and the parser and ingesters used by the structWSF framework [8]. commON has been validated for Microsoft
Excel CSV and Open Office CSV.

32

http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Attribute-value_pair
http://www.rfc-editor.org/rfc/rfc4180.txt

Of course, in addition to the core CSV specification, commON adds many conventions and constructs in keeping with the irON notation.

Differences from Generic irON
As a relatively "schema-less" framework, CSV presents a number of challenges to embrace the full slate of capabilities within the irON notation. While it is
possible with many conventions and restrictions to achieve the full slate of irON capabilities, some have been dropped from commON to promote simplicity
and ease-of-use. These capabilities may be added back in over time, particularly if better conventions can be discovered.

This section outlines these differences between irON and commON.

No Schema Module, Other Changes
As the most complex specification within irON, the schema module has been dropped from commON (at least for the present). This decision still allows
useful datasets to be authored and linked to existing schema, but the actual schema specification must either occur through one of the other irON
serializations (irXML or irJSON), or directly via RDF or OWL.

In commON, the ingest of attributes, class types and records has been standardized as a list process, with the operation signaled by keyword and
convention. As a result, the irON attributes of attribute, type and record are not used in commON.

The irON attributes of format type and addMapping have also been dropped from commON to streamline the specification.

Augmenting Attributes with Metadata
The section within the main irON notation described the approach for Augmenting Attributes with Metadata. For the commON serialization, once a primary
attribute is stated for an instance, metadata can be added for that attribute by:

1. Listing the metadata in the next column to the right of the subject attribute, and
2. Using the nested notation of &primaryAttribute&attributeMetadata to designate the new metadata.

The key to the syntax is appending of the metadata attribute with the ampersand ('&') designator to the primary attribute (which has already been
designated with the standard & designator), leading to the linked ampersand convention.

Here is an example of this syntax with paper as the primary attribute, and the source attribute as the metadata about the paper:

&paper &paper&source
Lecture Notes in Math. Journal of Irreproducible Results

Specific Processing Options
For preference and readability reasons, some may prefer to present and manipulate their information with slightly different options for conventions. These
processing choices are invoked via the &&options keyword. The current ones availalble in commON are:

Attribute Description Default

listSeparator a single character used to separate items in a list
entry

|

listSeparatorEscape how the character gets escaped if it is present in a
value without separating a list

%7C

seqNum yes, no yes

The listSeparator attribute sets what the delimiter is for a list of values for a single attribute. The default value is the pipe characters ('|'), though these
characters are also possible: comma (','), semi-colon (';'), and squiggle ('~'). The data publisher has to specify a value for the listSeparatorEscape attribute
to tell the commON processor engine how to escape/unescape the list separator character.

The seqNum attribute is a Boolean (yes, no) value. If set to yes, a value is added to the instance record listings that enables all values to be sorted in
offline applications (especially spreadsheets for the commON serialization).

Note: It is recommended to set the seqNum value to 'yes' if you are using the Stacked style (see below) for instance records.

Instance Record Presentation Styles
As discussed for the Instance Record Object below, there are two entry presentation styles available for instance records: Row and Stacked. See further
that section.

Reduced Keyword Set
As a result, these existing irON attributes and keywords are not presently available for use within commON:

addMapping equivalentTypeTo schema

attribute format subPropertyOf

equivalentPropertyTo record subTypeOf

ref

It is recommended not to use these terms in a commON specification as they might pose conflicts with other irON serializations.

33

General commON Design
The "schema-less" nature of CSV necessitates introducing some broad design considerations to commON. These are:

All keywords and modules are introduced by a standard character, with the ampersand ('&') chosen for this purpose
Module or processing sections require a further convention, with the double ampersand ('&&') prefix chosen for this purpose
Minor, but set structural conventions in relation to specified rows and columns, requirements help instruct the commON ingesters and
parsers, and
A design objective has been to limit the number of conventions and requirements to as small a set as possible.

Summary of Conventions
Thus, here are the specific commON conventions:

1. irON vocabulary keywords are reserved
2. All section (object) types begin with && (which may also signal slight differences to the parser depending on mode keywords)
3. All attribute names begin with a single ampersand (&)
4. In the instance record layout (&&recordList):

the first row is restricted to the listing of attribute names (using the single ampersand prefix)
&id is required and must be placed in the first column
&type, if provided (and is highly recommended), must be placed in the second column
attributes with a list of values must have the values separated by the pipe ('|') character (or the alternative character per the
&listSeparator attribute)

5. Metadata about primary attributes for the instance are denoted by the linked ampersand notation of &primary&primaryMetadata, so long as
this metadata immediately follows the first separate listing of the primary attributeName

6. The &attributeList, &prefixList and &typeList sections list each entry sequentially by row with key:value in Cols 1 and 2
7. Blank rows may be inserted anywhere for readability
8. Comment rows begin with # (it might also appear as "# in CSV file) and are ignored during processing.

Dataset Object
The dataset object is signaled by the &&dataset keyword. The following example includes some metadata about the dataset, as well.

Dataset Example

&&dataset
&id &prefLabel &description &createDate &updateDate &linkage &source
http://mkbergman.com/swt/ Sweet

Tools
Sweet Tools is
a
comprehensive
listing of
about 800
semantic Web
and -related
tools, with
most open
source

8/12/2006 8/1/2009 http://example.com/link @mkbergman

&&recordList
&id &type &name &prefLabel &superType &role &description &prefURL
mkbergman person Michael

Bergman
Michael
Bergman

person Contractor a project
consultant

http://www.mkbergman.com

Instance Record Object
The instance record object is signaled by the &&recordList keyword. By convention, the next line must include the attribute names (& prefix) by column,
followed by the instance records row-by-row until the file ends or a another processing keyword ('&&') is encountered.

Also, as noted, the first two columns in this tabular layout are for &id and &type, respectively.

There is no practical limit on the number of attributes (columns) that can be specified. For readability it is advisable to break such instance tables into
digestible chunks. Also, attributes can be repeated when the schema allows multiple entries.

Instance Record Table Examples
As noted, there are two possible instance record table styles using commON. The parser recognizes both styles without further notation or instruction.
Which style you use is a matter of your own preference.

Instance Record Row Style

Here is an example of the Row style, where all attributes are listed in columns in a single row. If there are multiple, same attributes, and you are not using
the list separator convention, each duplicate attribute would be listed in its own column:

&&recordList
&id &type &name &prefLabel &superType &role &description &prefURL
fgiasson person Giasson,

Frederick
Frederick
Giasson

person Contractor a project
consultant

http://fgiasson.com/blog

michael_bergman person Michael
Bergman

Michael
Bergman

person Contractor a project
consultant

http://www.mkbergman.com

structured_dynamics organization Structured Structured organization Major project http://structureddynamics.com
34

structured_dynamics organization Structured
Dynamics LLC

Structured
Dynamics LLC

organization Major
Contractor

project
contractor

http://structureddynamics.com

Berkeley university University
of
California,
Berkeley

University
of
California,
Berkeley

organization NSF Funded
Partner

sponsoring
organization

http://www.berkeley.edu/

BibServer service BibServer BibServer project Participating
Service

a BKN node
and service

http://bibserver.berkeley.edu/

pitman person Pitman, Jim Pitman, Jim person PI BKN project
director

http://www.stat.berkeley.edu/~pitman/

Instance Records Stacked Style

Here is an example of the Stacked style, where duplicate values for a single attribute are listed in a stacked manner row-by-row until the listing is
completed. This style is useful when you want to see long attribute names, such as URIs, for example:

Note: The ID of the first column can be reitirated until it reachs the end of the description of the record if it is what the data publisher prefer.

&&recordList
&id &type &prefLabel &prefURL &isAuthorOfTitle
info:lib:am:2009-02-18:
maria_francisca_abad_garcia

Person Maria Francisca Abad-
Garcia

Acceso Abierto y revistas médicas españolas

Una base de datos de recursos web médicos: una solución a medida para
una recuperación más eficaz de información de Internet
[Open access and the Spanish medical journals]

Produccion científica de la Comunitat Valenciana en materias de
biomedicina y ciencias de la salud a través de las bases de datos del
Institute of Scientific Information (ISI) 2000-2004.

La base de datos de recursos web de la biblioteca médica virtual del
COMV
Uso de internet por los médicos colegiados de Valencia: un estudio de
viabilidad de la Biblioteca Médica Virtual del Colegio Oficial de
Médicos de Valencia
Ampliando el horizonte de MEDLINE : 100 bases de datos bibliográficas
médicas gratuitas en la red

Information needs and uses: an analysis of the literature published
in Spain, 1990–2004

info:lib:am:1971-02-01:
jose_manuel_barrueco

Person
Jose Manuel Barrueco http://www.uv.e

/=barrueco
Personal Data in a Large Digital Library

Cataloging Economics preprints: an introduction to the RePEc project
Personal Data in a Large Digital Library
WoPEc usage in 1999AD
Distributed Cataloging on the Internet: the RePEc project
Automated Extraction of Citation Data in a Distributed Digital
Library.
ReLIS: una biblioteca digital distribuida para Documentación.
Personal Data in a Large Digital Library.

Schema Linkage
The linkage to schema is signaled by the &&linkage keyword. Within that, there can be a number of sub-sections, such as &version and &linkedType (both
required), and then &prefixList, &attributeList or &typeList. Each of the &xxxList sub-sections conform to the name:value pair where the first (Col 1) entry is
the name of the listed attribute and the next column is its referenced &mapTo value.

Linkage Example
Note in this example the prefix list is not used.

&&linkage

&version &linkedType
0.1 rdf

&attributeList &mapTo
name http://xmlns.com/foaf/0.1/name
prefLabel http://www.w3.org/2008/05/skos#prefLabel
role http://purl.org/ontology/bkn/central#role
node http://purl.org/ontology/bkn/central#node
homepage http://xmlns.com/foaf/0.1/homepage
about http://purl.org/ontology/bkn/central#about

35

contribution http://purl.org/ontology/bkn/central#contribution
affiliation http://purl.org/ontology/bkn/central#affiliation
parent_org http://purl.org/ontology/bkn/central#parent_org
givenname http://xmlns.com/foaf/0.1/givenname
family_name http://xmlns.com/foaf/0.1/family_name
workplaceHomepage http://xmlns.com/foaf/0.1/workplaceHomepage
page http://xmlns.com/foaf/0.1/page
logo http://xmlns.com/foaf/0.1/logo
tags http://purl.org/ontology/bkn/central#tags
olb http://purl.org/ontology/bkn/central#olb
gdocs_id http://purl.org/ontology/bkn/central#gdocs_id

&typeList &mapTo
person http://xmlns.com/foaf/0.1/Person
software http://purl.org/ontology/bkn#Software
standard http://purl.org/ontology/bkn#Standard
organization http://xmlns.com/foaf/0.1/Organization
service http://purl.org/ontology/bkn#Service
license http://purl.org/ontology/bkn#License
journal http://purl.org/ontology/bibo/Journal
encyclopedia http://purl.org/ontology/bkn#Encyclopedia
university http://purl.org/ontology/bkn#University
department http://purl.org/ontology/bkn#Department
archive http://purl.org/ontology/bkn#Archive
dataset http://purl.org/ontology/bkn#Dataset
directory http://purl.org/ontology/bkn#directory
project http://xmlns.com/foaf/0.1/Project

To invoke a prefix list, here is an example for the last entry above:

&prefixList &mapTo
foaf http://xmlns.com/foaf/0.1/

which, when referenced in a &typeList, would appear as follows:

&typeList &mapTo
project foaf:Project

Downloadable Examples
Because they are difficult to reproduce in this format, here are two examples of complete commON files that are available for inspection:

The BKN project dataset, which is also used to populate the templates on the BibKN.org Web site, and
Sweet Tools, Mike Bergman's listing of 800+ semantic Web and -related tools.

Additionally, to demonstrate how controlled vocabularies, validation tables and the like may be linked in with a commON CSV output, we also provide the
entry spreadsheet for Sweet Tools that shows these options in action. Saving as a CSV creates the very same commON CSV input file noted directly
above.

These files and uses are explained in the accompanying document to this specification, Annex: A commON Case Study using Sweet Tools.

 ACKNOWLEDGEMENTS
Work towards this specification was supported in part by the Bibliographic Knowledge Network Project (NSF Award 0835851). The support was specifically
for the BibJSON version of irJSON and the parser and converter designs [6].

REFERENCES
[1] For a detailed discussion of RDF, see Michael K. Bergman, 2009. "Advantages and Myths of RDF," in AI3 blog, April 8, 2009. See
http://www.mkbergman.com/483/advantages-and-myths-of-rdf/.

[2] An attribute-value system is a basic knowledge representation framework comprising a table with columns designating "attributes" (also known as
properties, predicates, features, parameters, dimensions, characteristics or independent variables) and rows designating "objects" (also known as entities,

36

http://openstructs.org/sites/openstructs.org/files/downloads/bkn_dataset_20091020.csv
http://bibkn.org
http://openstructs.org/sites/openstructs.org/files/downloads/swt_dataset_20091020.csv
http://openstructs.org/sites/openstructs.org/files/downloads/sweet_tools_20091020.xls
http://openstructs.org/iron/common-case-study
http://www.mkbergman.com/483/advantages-and-myths-of-rdf/
http://en.wikipedia.org/wiki/Attribute-value_system

instances, exemplars, elements or dependent variables). Each table cell therefore designates the value (also known as state) of a particular attribute of a
particular object. This is the basic table presentation of a spreadsheet or relational data table.

Attribute-values can also be presented as pairs in a form of an associative array, where the first item listed is the attribute, often followed by a separator such
as the colon, and then the value. JSON and many simple data struct notations follow this format. This format may also be called attribute-value pairs, key-
value pairs, name-value pairs, alists or others. In these cases the "object" is implied, or is introduced as the name of the array.

[3] As used herein, the name and concept of attribute is used interchangeable with property. Both of these are equivalent to a predicate in an RDF triple. It is
recommended that parsers for the various irON serializations recognize both terms (and their variants) interchangeably.

[4] We use the reference to the "ABox" and “TBox” in accordance with this working definition for description logics:

"Description logics and their semantics traditionally split concepts and their relationships from the different treatment of instances and
their attributes and roles, expressed as fact assertions. The concept split is known as the TBox (for terminological knowledge, the basis
for T in TBox) and represents the schema or taxonomy of the domain at hand. The TBox is the structural and intensional component of
conceptual relationships. The second split of instances is known as the ABox (for assertions, the basis for A in ABox) and describes the
attributes of instances (and individuals), the roles between instances, and other assertions about instances regarding their class
membership with the TBox concepts."

[5] Frank Manola and Eric Miller, eds., 2004. RDF Primer , W3C Recommendation 10 February 2004. See especially http://www.w3.org/TR/2004/REC-rdf-
primer-20040210/#reification.

[6] BibJSON is a JSON-based format designed for representation of bibliographic data, meaning data about documents of various kinds, and about the
people, organizations and subjects connected to those documents. BibJSON enhances and extends the data model of BibTeX in a number of ways. Its formal
specification is currently nearing public release. BibJSON is an initiative of the Bibliographic Knowledge Network. BKN is a project to develop a suite of tools
and services to encourage formation of virtual organizations in scientific communities of various types. BKN is a project started in September 2008 with
funding by the NSF Cyber-enabled Discovery and Innovation (CDI) Program (Award # 0835851). The major participating organizations are the American
Institute of Mathematics (AIM), Harvard University, Stanford University and the University of California, Berkeley.

[7] The CSV mime type is defined in Common Format and MIME Type for Comma-Separated Values (CSV) Files [RFC 4180]. A useful overview of the CSV
format is provided by The Comma Separated Value (CSV) File Format. Also, see that author's related CTX reference for a discussion of how schema and
structure can be added to the basic CSV framework; see http://www.creativyst.com/Doc/Std/ctx/ctx.htm, especially the section on the comma-delimited version
(http://www.creativyst.com/Doc/Std/ctx/ctx.htm#CTC).

[8] structWSF is a platform-independent Web services framework for accessing and exposing structured RDF data, with generic tools driven by underlying
data structures. Its central perspective is that of the dataset. Access and user rights are granted around these datasets, making the framework enterprise-
ready and designed for collaboration. Since a structWSF layer may be placed over virtually any existing datastore with Web access -- including large
instance record stores in existing relational databases -- it is also a framework for Web-wide deployments and interoperability.

37

http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Abox
http://en.wikipedia.org/wiki/Tbox
http://www.mkbergman.com/466/thinking-inside-the-box-with-description-logics/
http://en.wikipedia.org/wiki/Description_logics
http://www.w3.org/TR/2004/REC-rdf-primer-20040210
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#reification
http://bibkn.org
http://www.nsf.gov/crssprgm/cdi/
http://www.bibkn.org/drupal/conStruct/datasets/99/resource/bkncentral_AIM
http://www.bibkn.org/drupal/conStruct/datasets/99/resource/bkncentral_Harvard
http://www.bibkn.org/drupal/conStruct/datasets/99/resource/bkncentral_Stanford
http://www.bibkn.org/drupal/conStruct/datasets/99/resource/bkncentral_Berkeley
http://www.rfc-editor.org/rfc/rfc4180.txt
http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm
http://www.creativyst.com/Doc/Std/ctx/ctx.htm
http://www.creativyst.com/Doc/Std/ctx/ctx.htm#CTC
http://openstructs.org/

