New UMBEL Web Services

umbel_logo_260_160I am happy to announce the immediate availability of a brand new UMBEL website and a new set of eight UMBEL web services.

UMBEL (Upper Mapping and Binding Exchange Layer) is a general reference structure of 28,000 concepts, which provides a scaffolding to link and interoperate other datasets and domain vocabularies. This project is now six years old.

I would recommend that your read Mike’s blog post about this new release if you want more background information about UMBEL and to have a better understanding of how it can help you integrate, manage, publish and reason over your data.

In this blog post, I will focus on the technical aspects of this new web site and the new set of web service endpoints.

Toward a Better Web Experience

The Web is changing fast. Techniques for developing web sites are constantly and quickly evolving. People uses all kind of devices with different sizes of screens to consume Web content. Websites are more and more responsive by their clever architecture design, and their simpler user interfaces. This is the kind of website we wanted to create for the new UMBEL website.

Clojure Web Service Endpoints at the Core

The core of the new UMBEL website are the new web services. As soon as you are performing a search, or looking at the description of a reference concept or a super type, your browser is making a series of asynchronous queries to the UMBEL web service endpoints.

The average query time is about 60 milliseconds for any of the web service query. This means that a web page is fully loaded within 300 to 500 milliseconds where most of the time is spent downloading the web files (the JavaScript, CSS, HTML and image files) and not querying the web service endpoints. Bearing in mind that the website currently run on a small server with a single core and 1.8G of RAM, these are really good performance figures.

We are initially releasing 8 web service endpoints (with more to follow). They have been created to help developers quickly start using the reference structure without having to download and deploy the entire structure on their own infrastructure. The 8 web services are:

  1. Search concept
  2. Get concept
  3. Get super type
  4. Get narrower concepts
  5. Get broader concepts
  6. Get sub-classes
  7. Get super-classes
  8. Degree

All these web services are calculating the results at runtime. For example, if you want to find the degree between two reference concepts, then the degree is calculated at runtime. It is the same for all the web services that does inferencing like the Get narrower concepts or Get broader concepts web service endpoints.

What we did to get these excellent performance measures is to use Clojure as the programming language and framework to develop the new web service endpoints. Then we define the UMBEL structure as Clojure code.

Each web service endpoint is comprised of simple pure functions that perform calculations on the UMBEL graph of 28 000 nodes. None of the functions are more than 30 lines of code (per endpoint) which greatly simplifies their creation, debugging, maintenance and optimization. Then we use contributed libraries such as Ring and Compojure to manage the creation of the web service endpoints, and Clucy/Lucene for the search engine.

The web services can easily be scaled horizontally since everything is self contained in a single WAR file that can be deployed on new servers in a few clicks. Then the new servers can participate into a cluster of UMBEL web service servers.

Another advantage of using this technology stack for creating the UMBEL web service endpoints is that UMBEL is not just a reference structure nor a set of web service endpoints. It is also a programming API that could be used in any Clojure or Java applications. The UMBEL reference structure, along with all the functions that uses it will be available as a JAR file. That way, UMBEL become portable. It could be used as a library in any JVM application without requiring it to send queries to external web services, or to create complex stacks to deploy and use the UMBEL reference structure in different applications.

Bootstrap as the HTML/CSS/JavaScript Framework

The previous UMBEL website was using Drupal 6. For the ones that were using it, it was sometimes clunky, less responsive and more heavy weight. The problem is that we were not requiring a full CMS system for developing a simple UMBEL website that is only informational.

We wanted a responsive experience for the UMBEL user. We wanted to have the fastest experience possible and we wanted to have this experience on any kind of device: desktop computers, tables, mobile phones, etc.

This is why we choose to develop the new UMBEL website using Twitter’s Bootstrap HTML, CSS and JavaScript framework. This is a framework that anybody can use to quickly create simple, beautiful and modern websites. It uses a grid system to create responsive user interfaces on any kind of device (screen size). That way, UMBEL users have the same kind of experience whether they are using a normal desktop screen, a tablet of their mobile phone.

This choice enabled us to create a simple, modern, nice looking and responsive website for UMBEL.

Introduction to the UMBEL Web Services

Now let’s take the time to introduce each of the UMBEL web service endpoint. The first thing to know is that the UMBEL web service endpoints are free to use, have no usage limits and there is no throttling.

Search Concept Web Service

The Search Web service is used to find UMBEL reference concepts that match a search string. This is the primary tool for finding available concepts in the reference structure. It supports the Lucene query syntax and search queries can be constrained on different fields like the preferred label, alternative labels, descriptions and URI.

Get Concept Web Service

The Get Concept Web service is used to get the full description of a UMBEL Reference Concept. By querying this Web service endpoint, you will get the preferred label, all the alternative labels (namely, the items in the semset), the sub/super classes of the concept, the broader/narrower concepts and the description of that concept.

This is the Web service endpoint that should be used to get the direct relationships with any other reference concept.

Reference concepts descriptions are available as N-Triples, RDF+XML, structJSON or Clojure code.

Get Super Type Web Service

The Get Super Type Web service is used to get the full description of a UMBEL Super Type. By querying this Web service endpoint, you will get the preferred label, all of the alternative labels, the description, and the disjoint super types of a target super type.

Get Narrower Concept Web Service

The Get Narrower Concept Web service is used to get the list of all the narrower concepts of a given reference concept. This processing is done by inference, which means that if A -> B -> C are narrower concepts, then the narrower concepts of A are both B and C, which is what will be returned by the endpoint.

Get Broader Concept Web Service

The Get Broader Concept Web service is used to get the list of all the broader concepts for a given reference concept. This processing is done by inference, which means that if A -> B -> C are broader concepts, then the broader concepts of C are both A and B, which is thus what will be returned by the endpoint.

The broader reference concepts do not include the super type as their top concept (use the Get Super-Class-Of web service endpoint for that).

Get Sub Classes Web Service

The Get Sub Classes Web service is used to get the list of all the sub classes of a given reference concept. This processing is done by inference, which means that if A -> B -> C are sub classes, then the sub classes of A are both B and C, which is what will be returned by the endpoint.

Get Super Classes Web Service

The Get Super Classes Web service is used to get the list of all the super classes of a given reference concept. This processing is done by inference, which means that if A -> B -> C are super classes, then the super classes of C are both A and B, which is what will be returned by the endpoint.

The super classes do include the super types as their top concept (use the Get Super-Class-Of web service endpoint for that).

Degree Web Service

The Degree Web service is used to get the degree (measure of distance) between two UMBEL reference concepts by following the path of a transitive property.

Conclusion

This new website along with these new web service endpoints are still using the UMBEL reference structure version 1.05. However, in the coming month or two, a new version of the reference structure should be released. The structure itself won’t change much except the introduction of a few new reference concepts. But new mechanisms (mostly related to attributes) will be introduced. It will also come with a brand new mapping with external data schemas and data sources such as Schema.org, Wikipedia, etc.

On my side, I will start writing more about UMBEL. New web service endpoints will be released over time. The API available to use, manage and leverage the structure will constantly expand.

On the other side, I will write about how the UMBEL reference structure can be used, how it can be leveraged to integrate data sources, to expend search queries, etc.

Revision of Serializing RDF Data as Clojure Code Specification

In my previous blog post RDF Code: Serializing RDF Data as Clojure Code I did outline a first version of what a RDF serialization could look like if it would be serialized using Clojure code. However, after working with this proposal for two weeks, I found a few issues with the initial assumptions that I made that turned out to be bad design decisions in terms of Clojure code.

This blog post will discuss these issues, and I will update the initial set of rules that I defined in my previous blog post. Going forward, I will use the current rules as the way to serialize RDF data as Clojure code.

What Was Wrong

After two weeks of using the previous set of serializations rules and developing all kind of functions that uses that codes in the context of UMBEL graph traversal and analysis I found the following issues:

  1. Keys and values should be Vars
  2. Ontologies should all be in the same namespace (and not in different namespaces)
  3. The prefix/entity separator for the RDF resources should be a colon and not a slash

These are the three serialization rules that changed after working with the previous version of the proposal. Now, let’s see what caused these changes to occur.

Keys and Values as Vars

The major change is that when we serialize RDF data as Clojure map structures, the keys, and values that are not strings, should be Vars.

There are three things that I didn’t properly evaluated when I first outlined the specification:

  1. The immutable nature of the Clojure data structures
  2. The dependency between ontologies
  3. The non-cyclical namespaces dependency rule imposed by Clojure

In the previous proposal, every RDF property were Clojure functions and they were also the keys of the Clojure maps that were used to serialize the RDF resources. That was working well. However, there was a side effect to this decision: everything was fine until the function’s internal ID changed.

The issue here is that when we work with Clojure maps, we are working with immutable data structures. This means that even if I create a RDF record like this:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def mike {uri “http://foo.com/datasets/people/mike”
rdf/type foaf/+person
iron/pref-label “Mike”
foaf/knows [“http://foo.com/datasets/people/fred”]})[/raw]
[/cc]

And that somehow, in the compilation process the RDF ontology file get re-compiled, then the internal ID of the rdf/type property (function) will change. That means that if I create another record like this:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def mike-2 {uri “http://foo.com/datasets/people/mike”
rdf/type foaf/+person
iron/pref-label “Mike”
foaf/knows [“http://foo.com/datasets/people/fred”]})[/raw]
[/cc]

that uses the same rdf/type function, then these two records would refer to different rdf/type functions since it changed between the time I created the mike and the mike-2 resources. That may not look like an issue since both functions does exactly the same thing. However, this is an issue since for multiple tasks to manipulate and query RDF data rely on comparing these keys (so, these functions). That means that unexpected behaviors can happen and may even looks like random.

The issue here was that we were not referring to the Var that point to the function, but the function itself. By using the Var as the keys and values of the map, then we fix this inconsistency issue. What happens is that all the immutable data structure we are creating are referring to the Var which point to the function. That way, when we evaluate the Var, we will get reference to the same function whatever when it got created (before or after the creation of mike and/or mike-2). Here is what the mike records looks like with this modification:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def mike {#’uri “http://foo.com/datasets/people/mike”
#’rdf/type #’foaf:+person
#’iron/pref-label “Mike”
#’foaf/knows [“http://foo.com/datasets/people/fred”]})[/raw]
[/cc]

We use the #' macro reader to specify that we use the Var as the key and values of the map and not the actual functions or other values referenced by that Var.

The second and third issues I mentioned are tightly related. In a RDF & OWL world, there are multiple examples of ontologies that re-use external ontologies to describe their own semantic. There are cases where an ontology A use classes and properties from an ontology B and where the ontology B use classes and properties from an ontology A. They cross-use each other. Such usage cycles exists in RDF & OWL and are not that uncommon neither.

The problem with that is that at first, I was considering that each OWL ontologies that were to be defined as Clojure code would be in their own Clojure namespace. However, if you are a Clojure coder, you can envision the issue that is coming: if two ontologies cross-use each other, then it means that you have to create a namespace dependency cycles in your Clojure code… and you know that this is not possible because this is restricted by the compiler. This means that everything works fine until this happens.

To overcome that issue, we have to consider that all the ontologies belong to the same namespace (like clojure.core). However, in my next blog post that will focus on these ontologies description I will show how we can split the ontologies in multiple files while keeping them in the same namespace.

Now that we should have all the ontologies in the same namespace, and that we cannot use the namespaced symbols of Clojure anymore, I made the decision to use the more conventional way to write namespaced properties and classes in other RDF serializations which is to delimit the ontology’s prefix with a colon like that:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def mike {#’uri “http://foo.com/datasets/people/mike”
#’rdf:type #’foaf:+person
#’iron:pref-label “Mike”
#’foaf:knows [“http://foo.com/datasets/people/fred”]})[/raw]
[/cc]

Revision of the RDF Code Rules

Now let’s revise the set of rules that I defined in the previous blog post:

  1. A RDF resource is defined as a Clojure map where:
    1. Every key is a Var that point to a function
    2. Every value is a:
      1. string
        1. A string is considered a literal if the key is a owl:DatatypeProperty
        2. A string is considered a URI if the key is a owl:ObjectProperty
      2. map
        1. A map represent a literal if the value key is present
        2. A map represent a reference to another resource if the uri key is present
        3. A map is invalid if it doesn’t have a uri nor a value key
      3. vector
        1. A vector refer to multiple values. Values of a vector can be stringsmaps, symbols or Vars
      4. symbol
        1. A symbol can be created to simplify the serialization. However, these symbols have to reference a string or a var object
      5. var
        1. A var reference another entity

In addition to these rules, there are some more specific rules such as:

  1. The value of a uri key is always a string
  2. If the #’rdf:type key is not defined for a resource, then the resource is considered to be of type #’owl:+thing (since everything is at least an instance of the owl:Thing class in OWL)

Finally, there are two additional classes and datatypes creation conventions:

  1. The name of the classes starts with a + sign, like: #’owl:+thing
  2. The name of the datatypes starts with a * sign, like: #’xsd:*string

As you can see, the rules that govern the serialization of RDF data as Clojure code are minimal and should be simple to understand for someone who is used to Clojure code and that tried to write a few resource examples using this format. Now, let’s apply these rules with a series of examples.

Note 1: in the examples of this blog post, I am referring to Vars like #’uri, #’value, #’lang, #’datatype, etc. To make the rules simpler to read and understand, consider that these Vars are defined in the user‘s namespace. However, they are vars that are defined in the rdf.core namespace that will be made publicly available later.

Note 2: All the properties and classes resource Vars have been defined in the same namespace. They should be included with :require or :use like (:use [ontologies.core]) from the ns function of the Clojure source code file that define this RDF resource. We will discuss about these namespaces in a subsequent blog post.

Revision of Serializing RDF Code in N-Triples

The serialize-ntriples function got modified to comply with the new set of rules:

[cc lang=’lisp’ line_numbers=’false’]
[raw](declare serialize-ntriples-map-value serialize-ntriples-string-value is-datatype-property?)

(defn serialize-ntriples
[resource]
(let [n3 (atom “”)
iri (get resource #’rdf.core/uri)]
(doseq [[property prop-vals] resource]
(let [property-uri (get (meta property) #’rdf.core/uri)]
; Don’t do anything with the “uri” key
(if (not= property #’rdf.core/uri)
(if (vector? prop-vals)
; Here the value is a vector of maps or values
(doseq [v prop-vals]
(let [val (if (var? v) @v v)]
(if (map? val)
; The value of the vector is a map
(reset! n3 (str @n3 (serialize-ntriples-map-value val iri property-uri)))
(if (string? val)
; The value of the vector is a string
(reset! n3 (str @n3 (serialize-ntriples-string-value val iri property-uri property)))))))
(let [vals (if (var? prop-vals) @prop-vals prop-vals)]
(if (map? vals)
; The value of the property is a map
(reset! n3 (str @n3 (serialize-ntriples-map-value vals iri property-uri)))
(if (string? vals)
; The value of the property is some kind of literal
(reset! n3 (str @n3 (serialize-ntriples-string-value vals iri property-uri property))))))))))
@n3))

(defn- serialize-ntriples-map-value
[m iri property-uri]
(if (not (nil? (get m #’rdf.core/uri)))
; The value is a reference to another resource
(format “<%s> <%s> <%s> .\n” iri property-uri (get m #’rdf.core/uri))
(if (not (nil? (get m #’rdf.core/value)))
; The value is some kind of literal
(let [value (get m #’rdf.core/value)
lang (if (get m #’rdf.core/lang) (str “@” (get m #’rdf.core/lang)) “”)
datatype (if (get m #’rdf.core/datatype) (str “^^<” (get (deref (get m #’rdf.core/datatype)) #’rdf.core/uri) “>”) “”)]
(format “<%s> <%s> \”\”\”%s\”\”\”%s%s .\n” iri property-uri value lang datatype))
(if (string? m)
; The value of the sector is some kind of literal
(format “<%s> <%s> \”\”\”%s\”\”\” .\n” iri property-uri m)))))

(defn- serialize-ntriples-string-value
[s iri property-uri property]
; The value of the vector is a string
(if (true? (is-datatype-property? property))
; The property referring to this value is a owl:DatatypeProperty
(format “<%s> <%s> \”\”\”%s\”\”\” .\n” iri property-uri s)
; The property referring to this value is a owl:ObjectProperty
(format “<%s> <%s> <%s> .\n” iri property-uri s)))

(defn is-datatype-property?
[property]
(if (= (-> property
meta
(get #’ontologies.core/rdf:type)
deref
(get #’rdf.core/uri))
(-> #’ontologies.core/owl:+datatype-property
deref
(get #’rdf.core/uri)))
(eval true)
(eval false)))
[/raw]
[/cc]

Serializing a RDF Resource

Now let’s serialize a new RDF resource using the new set of rules:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def fred {#’uri “http://foo.com/datasets/people/fred”
#’rdf:type [#’foaf:+person #’owl:+thing]
#’iron:pref-label “Fred”
#’iron:alt-label {#’value “Frederick”
#’lang “en”}
#’foaf:skypeID {#’value “frederick.giasson”
#’datatype #’xsd/*string}
#’foaf:knows [{#’uri “http://foo.com/datasets/people/bob”}
mike
“http://foo.com/datasets/people/teo”]})[/raw]
[/cc]

One drawback with these new rules (even if essential) is that they complexify the writing of the RDF resources because of the (heavy) usage of the #' macro.

However, on the other hand, they may looks like more familiar to people used to RDF serializations because of the usage of the colon instead of the slash to split the ontology prefix with the ending of the URI.

What we have above, is how the RDF data is represented in Clojure. However, there is a possibility to make this serialization less compact by creating a macro that would change the input map and automatically inject the usage of the #' reader macro into the map structures that define the RDF resources.

Here is the r macro (“r” stands for Resource) that does exactly this:

[cc lang=’lisp’ line_numbers=’false’]
[raw](defmacro r
[form]
(-> (walk/postwalk
(fn [x]
(if (and (symbol? x) (-> x
eval
string?
not))
`(var ~x)
x))
form)))[/raw]
[/cc]

Then you can use it to define all the RDF resources you want to create:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def fred (r {uri “http://foo.com/datasets/people/fred”
rdf:type [foaf:+person owl:+thing]
iron:pref-label “Fred”
iron:alt-label {value “Frederick”
lang “en”}
foaf:skypeID {value “frederick.giasson”
datatype xsd/*string}
foaf:knows [{uri “http://foo.com/datasets/people/bob”}
mike
“http://foo.com/datasets/people/teo”]})[/raw]
[/cc]

That structure is equivalent to the other one because the r macro will add the #' reader macro calls to change the input map before creating the resource’s Var.

By using the r macro, we can see that the serialization is made much simpler, and that at the end, it is more natural to people used to other RDF serializations.

Conclusion

I used the initial specification in the context of creating a new series of web services for the UMBEL project. This heavy usage of this kind of RDF data leaded to discover the issues I covered in this blog post. Now that these issues are resolved, I am confident that we can move forward in the series of blog posts that covers how (and why!) using Clojure code to serialize RDF data.

The next blog post will cover how to manage the ontologies used to instantiate these RDF resources.

RDF Code: Serializing RDF Data as Clojure Code

RDF Code is a specification to serialize RDF data as Clojure code1. This blog post introduce the first version of this new RDF serialization format. I will outline the rules that specify how such RDF data should be serialized using the Clojure programming language.

This specification may change over time. However, this is the specification that will be used for the future blog posts that I will write about this subject, and for the code that will be released.

I am also expecting feedbacks and propositions to make this serialization easier to use, simpler to define and cleaner.

What we do with this serialization is to write RDF resources as Clojure maps. This is not about defining a DSL to manipulate this data, but really to define the core Clojure structure that will be manipulated by Clojure functions and applications. Eventually a (or multiple) DSL could be created to help users and developers using this RDF data in their Clojure application. But this is not the current focus.

A Complete RDF Resource

Before outlining all the rules to create well-formed RDF data as Clojure code, let’s take a look at a resource that uses all the serialization features2. Note that this is the more complex it can be. Below we will see how we can normalize the usage of the serialization rules to end up with clean and easy to read RDF data as Clojure code.

[cc lang=’lisp’ line_numbers=’false’]
[raw](def fred {uri “http://foo.com/datasets/people/fred”
rdf/type [foaf/+person owl/+thing]
iron/pref-label “Fred”
iron/alt-label {value “Frederick”
lang “en”}
foaf/skypeID {value “frederick.giasson”
datatype xsd/*string}
foaf/knows [{uri “http://foo.com/datasets/people/bob”}
mike
“http://foo.com/datasets/people/teo”]})[/raw]
[/cc]

This code shows how to:

  • Serialize a single resource as a Clojure map
  • How to define a URI for that resource
  • How to define one or multiple rdf:type for a resource
  • How to define one or multiple values for a owl:DatatypeProperty
  • How to define one or multiple values for a owl:ObjectProperty
  • How to define the language of a Literal
  • How to define the datatype of a Literal

As you can see, such a RDF serialization format is expressive enough to be able to express any RDF triples. It also has syntactic rules that help reading and writing RDF data in that format.

Note that since this RDF data is also Clojure code, it means that the serialization format has been highly influenced by Clojure’s own syntax and coding style3. RDF data serialized using this format also needs to be valid Clojure code. Now, let’s outline the rules that govern the creation of such RDF data, then let explains all these rules using simple RDF code examples.

RDF Code Rules

Here is the list of all the rules that govern the creation of RDF data serialized as Clojure code:

  1. A RDF resource is defined as a Clojure map where:
    1. Every key is a symbol that reference a function
    2. Every value is a:
      1. string
        1. A string is considered a literal if the key is a owl:DatatypeProperty
        2. A string is considered a URI if the key is a owl:ObjectProperty
      2. map
        1. A map represent a literal if the value key is present
        2. A map represent a reference to another resource if the uri key is present
        3. A map is invalid if it doesn’t have a uri nor a value key
      3. vector
        1. A vector refer to multiple values. Values of a vector can be strings, maps or symbols
      4. symbol
        1. A symbol can be created to simplify the serialization. However, these symbols have to reference a string or a map object

In addition to these rules, there are some more specific rules such as:

  1. The value of a uri key is always a string
  2. If the rdf/type key is not defined for a resource, then the resource is considered to be of type owl:Thing (since everything is at least an instance of the owl:Thing class in OWL)

Finally, there are two additional classes and datatypes creation conventions:

  1. The name of the classes starts with a + sign, like: owl/+thing
  2. The name of the datatypes starts with a * sign, like: xsd/*string

As you can see, the rules that govern the serialization of RDF data as Clojure code are minimal and should be simple to understand for someone who is used to Clojure code and that tried to write a few resource examples using this format. Now, let’s apply these rules with a series of examples.

Note 1: in the examples of this blog post, I am referring to symbols like uri, value, lang, datatype, etc. To make the rules simpler to read and understand, consider that these symbols are defined in the user‘s namespace. However, they are symbols that are defined in the rdf.core namespace that will be made publicly available later.

Note 2: I am also referring to namespaced symbols like rdf/type, iron/pref-label, etc. These symbols are defined in their respective namespaces. They have been defined such as (:require [ontologies.rdf :as rdf] [ontologies.iron :as iron]) into the ns function of the Clojure source code file that define this RDF resource. We will discuss about these namespaces in a subsequent blog post.

Serializing RDF Code in N-Triples

Before starting to list all the examples, let’s define a Clojure function that we will use to convert the RDF code as N-Triples4. N-Triples is just a list of <subject> <predicate> <object> triples that describes the RDF resources we are describing. N-Triples is the simplest and most verbose RDF serialization that currently exists. What this serialize-ntriples function does is to take a Clojure map that represent a RDF resource and return a string that represents the serialized N-Triples.

What is important with that code is that is shows how the rules we outlined above got implemented to serialize RDF code as N-Triples. Such serializer function could be created to serialize Turtle and XML RDF serializations as well. Note that you won’t be able to use the serialize-ntriples function because you are missing the ontologies files. I will make them available in a subsequent blog post that will explain how properties, classes and datatypes are created and used in this context.

[cc lang=’lisp’ line_numbers=’false’]
[raw](declare serialize-ntriples-map-value serialize-ntriples-string-value is-datatype-property?)

(defn serialize-ntriples
[resource]
(let [n3 (atom “”)
iri (get resource rdf.core/uri)]
(doseq [[property vals] resource]
(let [property-uri (get (meta property) rdf.core/uri)]
; Don’t do anything with the “uri” key
(if (not= property rdf.core/uri)
(if (vector? vals)
; Here the value is a vector of maps or values
(doseq [val vals]
(if (map? val)
; The value of the vector is a map
(reset! n3 (str @n3 (serialize-ntriples-map-value val iri property-uri)))
(if (string? val)
; The value of the vector is a string
(reset! n3 (str @n3 (serialize-ntriples-string-value val iri property-uri property))))))
(if (map? vals)
; The value of the property is a map
(reset! n3 (str @n3 (serialize-ntriples-map-value vals iri property-uri)))
(if (string? vals)
; The value of the property is some kind of literal
(reset! n3 (str @n3 (serialize-ntriples-string-value vals iri property-uri property)))))))))
@n3))

(defn- serialize-ntriples-map-value
[m iri property-uri]
(if (not (nil? (get m rdf.core/uri)))
; The value is a reference to another resource
(format “<%s> <%s> <%s> .\n” iri property-uri (get m rdf.core/uri))
(if (not (nil? (get m rdf.core/value)))
; The value is some kind of literal
(let [value (get m rdf.core/value)
lang (if (get m rdf.core/lang) (str “@” (get m rdf.core/lang)) “”)
datatype (if (get m rdf.core/datatype) (str “^^<” (get (get m rdf.core/datatype) rdf.core/uri) “>”) “”)]
(format “<%s> <%s> \”\”\”%s\”\”\”%s%s .\n” iri property-uri value lang datatype))
(if (string? m)
; The value of the sector is some kind of literal
(format “<%s> <%s> \”\”\”%s\”\”\” .\n” iri property-uri m)))))

(defn- serialize-ntriples-string-value
[s iri property-uri property]
; The value of the vector is a string
(if (true? (is-datatype-property? property))
; The property referring to this value is a owl:DatatypeProperty
(format “<%s> <%s> \”\”\”%s\”\”\” .\n” iri property-uri s)
; The property referring to this value is a owl:ObjectProperty
(format “<%s> <%s> <%s> .\n” iri property-uri s)))

(defn is-datatype-property?
[property]
(if (= (get (get (meta property) rdf/type) rdf.core/uri) (get ontologies.owl/+datatype-property rdf.core/uri))
(eval true)
(eval false)))[/raw]
[/cc]

The Simplest Resource

Here is the simplest resource that can be written:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def fred {uri “http://foo.com/datasets/people/fred”
rdf/type “http://xmlns.com/foaf/0.1/Person”
iron/pref-label “Fred”
foaf/skypeID “frederick.giasson”
foaf/knows [“http://foo.com/datasets/people/bob”
“http://foo.com/datasets/people/mike”
“http://foo.com/datasets/people/teo”]})[/raw]
[/cc]

It produces these triples:

[raw]

<http://foo.com/datasets/people/fred> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<http://foo.com/datasets/people/fred> <http://purl.org/ontology/iron#prefLabel> """Fred""" .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/skypeID> """frederick.giasson""" .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/knows> <http://foo.com/datasets/people/bob> .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/knows> <http://foo.com/datasets/people/mike> .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/knows> <http://foo.com/datasets/people/teo> .

[/raw]

In this example, all the references to the classes and to other resources are made using strings that represent URIs. Then all the literal values are normal strings as well. The vector is composed of a list of URIs without mixing different type of values.

Using Classes Symbols

In this example, we will use the symbol that reference a class resource we have defined in an ontology:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def fred {uri “http://foo.com/datasets/people/fred”
rdf/type foaf/+person
iron/pref-label “Fred”
foaf/skypeID “frederick.giasson”
foaf/knows [“http://foo.com/datasets/people/bob”
“http://foo.com/datasets/people/mike”
“http://foo.com/datasets/people/teo”]})[/raw]
[/cc]

The same set of triples as the previous example will be generated by serialize-ntriples.

What is interesting with this new example is that it is more appealing to human readers. Instead of having a full URI string, we are seeing a symbol which is more pleasant to the eyes.

But the real benefit is no that it is more pleasant to the eyes, but that it really refers to something. It refers to a class resource. This means that we have a docstring for that class, that we can check the code that describes the class to see all its characteristics, that you will be able to auto-complete it in your IDE, etc.

Multiple Types

It is possible to define multiple types for a resource. The only thing you have to do is to use a vector as the value of the rdf/type key:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def fred {uri “http://foo.com/datasets/people/fred”
rdf/type [foaf/+person owl/+thing]
iron/pref-label “Fred”
foaf/skypeID “frederick.giasson”
foaf/knows [“http://foo.com/datasets/people/bob”
“http://foo.com/datasets/people/mike”
“http://foo.com/datasets/people/teo”]})[/raw]
[/cc]

This code will generate the following triples:

[raw]

<http://foo.com/datasets/people/fred> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<http://foo.com/datasets/people/fred> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/2002/07/owl#Thing> .
<http://foo.com/datasets/people/fred> <http://purl.org/ontology/iron#prefLabel> """Fred""" .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/skypeID> """frederick.giasson""" .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/knows> <http://foo.com/datasets/people/bob> .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/knows> <http://foo.com/datasets/people/mike> .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/knows> <http://foo.com/datasets/people/teo> .

[/raw]

Specifying a Datatype for a Literal

It is also possible to define a datatype for a literal. What you have to do is to use a map with a value and a datatype key:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def fred {uri “http://foo.com/datasets/people/fred”
rdf/type [foaf/+person owl/+thing]
iron/pref-label {value “Fred”
datatype xsd/*string}
foaf/skypeID “frederick.giasson”
foaf/knows [“http://foo.com/datasets/people/bob”
“http://foo.com/datasets/people/mike”
“http://foo.com/datasets/people/teo”]})[/raw]
[/cc]

The triples that will be generated are:

[raw]

<http://foo.com/datasets/people/fred> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<http://foo.com/datasets/people/fred> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/2002/07/owl#Thing> .
<http://foo.com/datasets/people/fred> <http://purl.org/ontology/iron#prefLabel> """Fred"""^^<http://www.w3.org/2001/XMLSchema#string> .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/skypeID> """frederick.giasson""" .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/knows> <http://foo.com/datasets/people/bob> .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/knows> <http://foo.com/datasets/people/mike> .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/knows> <http://foo.com/datasets/people/teo> .

[/raw]

Specifying a Language Tag for a Literal

It is also possible to define a language tag for a literal. What you have to do is to use a map with a value and a lang key:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def fred {uri “http://foo.com/datasets/people/fred”
rdf/type [foaf/+person owl/+thing]
iron/pref-label {value “Fred”
lang “en”}
foaf/skypeID “frederick.giasson”
foaf/knows [“http://foo.com/datasets/people/bob”
“http://foo.com/datasets/people/mike”
“http://foo.com/datasets/people/teo”]})[/raw]
[/cc]

This code will produce the following triples:

[raw]

<http://foo.com/datasets/people/fred> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<http://foo.com/datasets/people/fred> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/2002/07/owl#Thing> .
<http://foo.com/datasets/people/fred> <http://purl.org/ontology/iron#prefLabel> """Fred"""@en .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/skypeID> """frederick.giasson""" .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/knows> <http://foo.com/datasets/people/bob> .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/knows> <http://foo.com/datasets/people/mike> .
<http://foo.com/datasets/people/fred> <http://xmlns.com/foaf/0.1/knows> <http://foo.com/datasets/people/teo> .

[/raw]

Referring to a URI Using a Map

It is possible to explicit the fact that a literal value is a URI reference. It is possible to do that by using a map and by specifying the uri key. Some people may prefer that approach because it makes the fact that a literal is a URI explicit without having to know the nature of the key (i.e. if the property is a datatype or an object property):

[cc lang=’lisp’ line_numbers=’false’]
[raw](def fred {uri “http://foo.com/datasets/people/fred”
rdf/type [foaf/+person owl/+thing]
iron/pref-label {value “Fred”
lang “en”}
foaf/skypeID “frederick.giasson”
foaf/knows [{uri “http://foo.com/datasets/people/bob”}
{uri “http://foo.com/datasets/people/mike”}
{uri “http://foo.com/datasets/people/teo”}]})[/raw]
[/cc]

The same triples will be generated as the example above.

Mixing Values in a Vector

It is possible to mix the values in a vector. In the following example, we are using literals as URIs, and maps that refer to URIs as well. The rules permit this kind of values mixing within a vector and the software that manipulate this kind of RDF data should be agnostic to this:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def fred {uri “http://foo.com/datasets/people/fred”
rdf/type [foaf/+person owl/+thing]
iron/pref-label {value “Fred”
lang “en”}
foaf/skypeID “frederick.giasson”
foaf/knows [“http://foo.com/datasets/people/bob”
{uri “http://foo.com/datasets/people/mike”}
“http://foo.com/datasets/people/teo”]})[/raw]
[/cc]

The same triples will be generated as the example above.

Using Symbols to Get Cleaner Code

Because of the way Clojure works, you can define new symbols that will refer to the values to add to this structure. Let’s go wild, and do define a symbol for each value of the resource we are describing:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def fred-uri “http://foo.com/datasets/people/fred”)

(def foaf_person foaf/+person)

(def owl_thing owl/+thing)

(def fred-label {value “Fred”
lang “en”})

(def fred-skype-id “frederick.giasson”)

(def bob-uri “http://foo.com/datasets/people/bob”)

(def mike-uri {uri “http://foo.com/datasets/people/mike”})

(def teo-uri “http://foo.com/datasets/people/teo”)

(def fred {uri fred-uri
rdf/type [foaf/+person owl/+thing]
iron/pref-label fred-label
foaf/skypeID fred-skype-id
foaf/knows [bob-uri
mike-uri
teo-uri]})[/raw]
[/cc]

The triples generated will be the same as the example above.

What happens here is that the Clojure reader substitutes the symbols by the actual things they refer to at evaluation time.

This is why this works and it is why it is still valid RDF code according to the rules outlined above. The serialize-ntriples function is not even aware that this data structure has been defined that way. It is the case because the map that it will receive as input will already be evaluated. This means that what it gets as input are the objects referenced by these symbols, and not the symbols themselves.

This mechanism can be leveraged to make the RDF code even more readable if you have patterns that a repeated constantly in a dataset file you are creating.

Conclusion

This is all good, but why yet another serialization for RDF? As I started to outline in my two previous blogposts on this topic, this is not just about serializing RDF in another format. It is about having RDF data that can be evaluated as code (in this case, Clojure code).

Considering RDF properties as functions open-up a World of possibilities. First, it means that by evaluating and compiling this kind of RDF code, you have a data structure that is able to validate itself according to the way the properties are defined into the OWL ontologies used to define their behaviors and semantics.

This blog post focused on how to serialize instances data. In the next blog posts, I will cover:

  • How to reify triples using this serialization
  • How to create the classes, properties and datatypes used by the serialization
  • How to validate the data structure
  • How to manage ontologies as Clojure packages

Feel free to comment this blog post and propose changes to the serialization format or the serialize-ntriples function.

Investigating Options to Serialize RDF data as Clojure Code

My initial intuition is that I could serialize RDF data into Clojure code where the OWL semantic of the RDF data is embedded, in some ways, into that code. I want to test how the general saying of homoiconic languages: Data as Code. Code as Data, fits with RDF & OWL.

Another intuition I have is the concept of Portable Data: stateful RDF data which embed its own semantic and which doesn’t rely on external (mostly stateless since we can rarely rely on their stated versions) ontologies. My intuition is that it would be possible to serialize RDF data in such a way that it would be self-aware of its own semantic which means that it would know how it can be interpreted, how it can be used, and how it should be validated. The idea is to end-up with Portable Data snippets that could be exchanged between systems without requiring prior, or post, schemas (ontologies) to interpret that information. Then web service endpoints such as OSF, or any other kind of applications, could emit such Portable Data structures without requiring any subsequent ontologies analysis from their part.

However, before being able to implement and demonstrate these intuitions, the first step is to check what such a RDF serialization may looks like. This is the goal of this blog post.

Serializing RDF Data as Clojure Code

Where to start? There are probably multiple ways to do that. Do we want to do that using a map, a structmap, a records, or…? What I wanted to use (at least initially) is a basic data structure that would give me the flexibility I need to serialize RDF data. I wanted a core structure such that existing Clojure developers could easily manipulate it using the existing Clojure functions and techniques that they are used to use.

The collection I choose to start with is the map. This key/value pair structure is ideal for serializing RDF data. It looks like JSON code, but is even simpler since it doesn’t require commas nor colons in its syntax.

The crux of the map structure is that in a map, the keys can be: keywords, symbols, strings, characters, booleans and numbers. The only things it cannot be are regular expressions and the nilvalue. What should be stated here is that symbols can be a lot of different things. They are names for vars, functions, etc.

This opens a World of possibilities to serialize RDF data as Clojure code. In fact, the keys of the map can virtually be anything: and this is just too nice to be true!

What we will investigate in the remaining of this blog posts are different ways to serialize RDF data as Clojure code. These are the initial tests I did to test my intuitions. All of them works, but only the last one really opens-up a World of possibilities and that enables me to implement my early intuitions.

Quick Introduction to RDF Data

RDF is nothing else than a bunch of triples of the form:

  • <subject> <predicate> <object>

Where the <subject> is the thing (resource, record, entity, etc.) being described, where the <predicate> is the property (attribute, etc.) that describes the subject and where the <object> is the value of the predicate which can be a reference to another subject, a literal value, etc.

Each <subject> do have at least a type. A type is nothing else than a class of things which is defined in a RDFS schema or a OWL ontology.

Then if you wire these triples together, you get a directed graph which we often refer to as a datataset. It is as simple as that. However, I won’t state that RDF is necessarily simple, since its expressivity (a double-edged sword) can make things much more complex.

The semantic of the data lies into the <predicate> and the type. It is the predicate and the type that tell us how to interpret, and use, the data. It is what is used to validate the data for example. That is exactly where Clojure, and its map structure, can help us to create this kind of portable data.

As you will see below, the serialization of RDF data as Clojure code looks like the structJSON RDF serialization format developed by Structured Dynamics and used at the core of the Open Semantic Framework. It is not a coincidence since that simple structure has been highly effective to serialize and transmit RDF information between OSF web services and other applications such as OSF for Drupal and other JavaScript applications.

Leveraging Serialization’s Hierarchy to Create Triples

Before jumping into Clojure, let’s take a quick look at a really simple structJSON record. What I want to show you is how triples can be extracted from such a data structure. It is the same principle that will be used to extract triples from the Clojure serialization:

[cc lang=’javascript’ line_numbers=’false’]
[raw] “subject”: [
{
“uri”: “http://dataset1.com/record-a/”,
“predicate”: [
{
“rdfs:type”: “http://umbel.org/umbel/rc/Person”
},
{
“iron:prefLabel”: “Bob”
},
{
“foaf:knows”: {
“uri”: “http://dataset2.com/record-b/”
}
}
}
][/raw]
[/cc]

What we leverage here to extract triples is the hierarchy nature of the serialization. Here the "subject" key introduce an array of objects. Each object has a "uri" key which is the identifier (<subject> of a triple). Then the "predicate" key introduces a series of attributes for that record. Each element of the array is a predicate with the key is the prefixed version of the RDF <predicate>. Then you have a value for each of these predicate keys. If you read the documentation, you will see that you can get to another level called the reification of that triple (don’t confuse with Clojure’s reification mechanism) that is used to define extra information related to a triple statement. That structJSON code would produce the following ntriples:

[cc lang=’text’ line_numbers=’false’]
[raw]http://dataset1.com/record-a/ rdfs:type http://umbel.org/umbel/rc/Person .
http://dataset1.com/record-a/ iron:prefLabel “Bob” .
http://dataset1.com/record-a/ foaf:knows http://dataset2.com/record-b/ .[/raw]
[/cc]

Serializing RDF using Maps and Keywords Keys

The most intuitive way to serialize RDF data as Clojure maps would be to create a map where all the keys are keywords. An initial test would be:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def resource {:uri “http://foo.com/1”
:rdf/type [foaf/Person owl/Thing]
:iron/prefLabel {:value “Fred”
:lang nil
:datatype xsd/string}
:foaf/knows [{:uri “http://foo.com/2”
:rei [{:iron/prefLabel [{:value “Bob”
:lang “en”}
{:value “Robert”
:lang “fr”}]}]}
{:uri “http://foo.com/3”
:rei [:iron/prefLabel “Mike”]}]})[/raw]
[/cc]

What we did here is to define a map with the symbol resource. This map is composed of a series of keys and values where the keys are keywords, and were the values can be strings, vectors or maps. The basic serialization rules are:

  • Each map has a :uri key that define the URI of the resource being described
  • Each key is a namespaced key where the root of the namespace is the prefix of the ontology where the <predicate> or type is defined
  • If the predicate is a owl:DatatypeProperty, then its value can be:
    • A vector with one or multiple map and/or string
    • A map which can have four keys:
      • :value which specify the actual string value
      • :lang which specify the language of that string
      • :datatype which specify the datatype of the string
      • :rei which specify reification statements for the triple
    • A string which is the actual value without any additional information about that Literal
  • If the predicate is a owl:ObjectProperty, then its value can be:
    • A vector with one or multiple map, string and/or symbol
    • A map which can have two keys:
      • :uri which specify the actual URI of the referenced resource
      • :rei which specify reification statements for the triple
    • A string which represent the URI of the resource to be referenced
    • A symbol which represents the URI string of the resource to be referenced

Namespacing Keywords

One of the important notion is that the keywords used as map keys are namespaced. This means that they are defined, and live, in their own namespace. This is an essential requirement for a RDF serialization since we re-use multiple ontologies that may share the same name for some of the predicates and that we don’t want these keywords to clash. That is why that by convention we do create each of these keywords in their respective ontology’s namespace. An ontology namespace is defined as the prefix used to refer to the ontology (for example, the Bibliographic Ontology‘s prefix is bibo, so :bibo/shortTitle would be the key referring to the property http://purl.org/ontology/bibo/shortTitle).

Usage

Now let see how we can work with such a structure in Clojure:

[cc lang=’lisp’ line_numbers=’false’]
[raw];; Return the values of the rdf/type property
(:rdf/type resource)
(resource :rdf/type)
(get resource :rdf/type)

;; Return all the properties that describes the resource
(keys resource)

;; Get the URI of the first person known by Fred
(:uri (first (:foaf/knows resource)))

;; Get the French name of the first person known by Fred
(:value (second (:iron/prefLabel (first (:rei (first (:foaf/knows resource)))))))

;; Update the name of Fred to Frederick
(update-in resource [:iron/prefLabel :value] str “erick”)

;; Output the difference betweeen the original resource and the updated one
(diff resource (update-in resource [iron/prefLabel value] str “erick”))

;; Find the value of a key
(find resource iron/prefLabel)

;; Select values of multiple keys
(select-keys resource [iron/prefLabel foaf/knows])

;; Merge a resource into another resource. The URI and properties of the later resource are kept into the merged resource
(def res-1 {uri “http://foo.com/datasets/test/1”
rdf/type owl/Thing
iron/prefLabel “Preferred Label”})

(def res-2 {uri “http://foo.com/datasets/test/2”
rdf/type owl/Thing
iron/altLabel “Alternative Label”})

(merge res-1 res-2)[/raw]
[/cc]

That is all good and easy. We use Clojure’s core functions and mechanism to easily manipulate RDF data into our application.

However, is this implementing the intuitions I started with? Definitely not. This is more like a conventional serialization format for RDF just like structJSON. The thing here is that if we want to do any kind of validation on this data, if we want the data to be self-aware of its own semantic, then it is not possible when keys are keywords. We would need external mechanisms to create that map structure, then to check what it refers to (the properties, the types, etc.). And then we would have to look them up into their respective ontologies and finally we would have to validate the data structure according to what these ontologies are saying by re-processing that map structure.

This is not quite what I had in mind and what my intuition was telling me.

Serializing RDF using Maps and Symbol Keys

Let push this idea further. What if the keys of the map that represent our RDF data are not keywords, but symbols? Symbols in Clojure name things like vars, functions, etc. Initially, let’s use symbols that refers to the URI (string) of the <predicate> and the types.

The serialization would look like:

[cc lang=’lisp’ line_numbers=’false’]
[raw](def resource {uri “http://foo.com/1”
rdf/type [foaf/Person owl/Thing]
iron/prefLabel {value “Fred”
datatype xsd/string}
foaf/knows [{uri “http://foo.com/2”
rei [{iron/prefLabel [{value “Bob”
lang “en”}
{value “Robert”
lang “fr”}]}]}
{uri “http://foo.com/3”
rei [iron/prefLabel “Mike”]}]})[/raw]
[/cc]

Now our resource is defined with the same structure, except that the keys are actual symbols. In this second iteration, we will consider that the symbols we defined here are representing a string which is the URI of the predicates or the types.

The real advantage of using symbol over keywords for what we are doing with these RDF serialization is that a symbol can:

  • Have a docstring
  • Have meta-data
  • The evaluation of the symbol will results into getting the actual full URI of the predicates/types

These are obvious enhancements over using keywords. First, by being able to define docstrings, which means that we will be able to document these properties and types such that Clojure IDEs can display the documentation of these symbols while you are writing/editing RDF data in Clojure.

Clojure’s meta-data system will be highly leveraged in the final candidate serialization format that I will cover in another blog post, so I won’t discuss it further for the moment.

Finally, once we evaluate such a map, we get the map along with all the evaluated properties/types which refers to their full URI. The evaluation of such as structure [(eval resource)] looks like:

[cc lang=’lisp’ line_numbers=’false’]
[raw]{uri “http://foo.com/1”, “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” [“http://xmlns.com/foaf/0.1/Person” “http://www.w3.org/2002/07/owl#Thing”], “http://purl.org/ontology/iron#prefLabel” {value “Fred”, datatype “http://www.w3.org/2001/XMLSchema#string”}, “http://xmlns.com/foaf/0.1/knows” [{uri “http://foo.com/2”, rei [{“http://purl.org/ontology/iron#prefLabel” [{value “Bob”, lang “en”} {value “Robert”, lang “fr”}]}]} {uri “http://foo.com/3”, rei [“http://purl.org/ontology/iron#prefLabel” “Mike”]}]}[/raw]
[/cc]

As you can see, we can get the full description of this resource with the full expansion of the URIs referenced by the symbols.

The same parsing rules defined in the previous section applies for this new format that uses symbols instead of keys. The same comments regarding namespaces applies here too.

The usage is nearly identical except that a symbol is not a function like the keys which means that you cannot get the value of a key like this when the key is a symbol:

[cc lang=’lisp’ line_numbers=’false’]
[raw](rdf/type resource)[/raw]
[/cc]

What you have to do is to access that using one of the following two methods:

[cc lang=’lisp’ line_numbers=’false’]
[raw](resource rdf/type)
(get resource rdf/type)[/raw]
[/cc]

Even if we improved upon using keywords as keys for the map, we still don’t have any kind of embedded semantic or auto-validation capabilities as my intuition was telling me. It remains the same kind of structure without much significant improvements.

Serializing RDF using Maps and Symbol Keys Referring to Functions

Let’s change our mind, and let evolve this idea of symbols: what if the symbols we define in the map are actually functions instead of strings?

What!?!?

A function could be the key of a map in Clojure?

Well not directly, but yes. In Clojure symbols are naming different things such as functions. This is quite an important feature of Clojure: it makes the distinction between how things are named, and these actual things.

This means that what is really used as keys in our map structure is a symbol. However, that symbol happen to refer to a function. So it is not the function itself that is used as a key, but the actual thing that refers to it which is the symbol.

However, the result is the same: if we evaluate the map, we will get a series of symbols that evaluates to functions. That is exactly what we were looking for: that little gem, hanging around, just waiting to be picked-up.

This opens an overwhelming number of possibilities. This means that we have a data structure that can be evaluated to a series of functions and that can be executed. That is exactly what should enable us to define that Portable [RDF] Data serialization format.

That means that we won’t only be able to define RDF triples as Clojure code, but that we could even execute that Clojure code to do different things with the data, such as auto-validating itself, etc.

Finally, what if we consider RDF predicates as Clojure functions? Predicates have all kind of properties and semantics. They can be specified to be used to describe only certain kind of resources, or to refer to specific type of values. Predicates can be symmetric, functional, transitive, etc. What if we simply implement these characterics as Clojure functions? This is what this whole thing is mean to be. When evaluating and “running” that RDF map structure, we would simply execute these functions that define the semantic and characteristics of these predicates. That is exactly where lies my intuitions: we would end-up with a RDF serialization format that “embed” it own semantic and that can be used to self-validate itself by executing the structure. That is what I would refer to as Portable Data: stateful data with embedded stateful semantic.

The initial version of this other revision of the RDF serialization as Clojure code will be outlined in the next blog post since its discussion warrant a full blog post in itself. However I think that you can start understanding where I am heading with these intuitions and why I am using Clojure to test them.

Once an initial version of this serialization will be outlined, we will see how it can be used, what are the benefits, how the idea of Portable Data could be leveraged, how it can help creating and managing data using traditional IDEs such as Emacs. Once the basis will be outlined, we will have all the leisure to explore the benefits of this concept.

Data as Code. Code as Data: Tighther Semantic Web Development Using Clojure

LhrMyRXKX9w!v!gOqzkEBlYSdf8I have been professionally working in the field of the Semantic Web for more than 7 years now. I have been developing all kind of Ontologies. I have been integrating all kind of datasets from various sources. I have been working with all kind of tools and technologies using all kind of technologies stacks. I have been developing services and user interfaces of all kinds. I have been developing a set of 27 web services packaged as the Open Semantic Framework and re-implemented the core Drupal modules to work with RDF data has I wanted it to. I did write hundred of thousands of line of codes with one goal in mind: leveraging the ideas and concepts of the Semantic Web to make me, other developers, ontologists and data-scientists working more accurately and efficiently with any kind data.

However, even after doing all that, I was still feeling a void: a disconnection between how I was thinking about data and how I was manipulating it using the programming languages I was using, the libraries I was leveraging and the web services that I was developing. Everything is working, and is working really well; I did gain a lot of productivity in all these years. However, I was still feeling that void, that disconnection between the data and the programming language.

Every time I want to work with data, I have to get that data serialized using some format, then I have to parse it using a parser available in the language I am working with. Then the data needs to be converted into an internal structure by the parser. Then I have to use all kind of specialized APIs to work with the data represented by that structure. Then if I want to validate the data that I am working with, I will probably have to use another library that will perform the validation for me which may force me to migrate that data to another system that will make it available to these reasoners and validators. Etc, etc, etc…

All this is working: I have been doing this for years. However, the level of interaction between all these systems is big and the integration take time and resources. Is there a way to do things differently?

The Pink Book

417XBWM48NL._Once I realized that, I started a quest to try to change that situation. I had no idea where I was heading, and what I would find, but I had to change my mind, to change my view-point, to start getting influenced by new ideas and concepts.

What I realized is how disconnected mainstream programming languages may be with the data I was working with. That makes a natural first step to start my investigation. I turned my chair and started to stare at my bookshelves. Then, like the One Ring, there was this little Pink (really pink) book that was staring at me: Lambda-calcul types et mod[raw]è[/raw]les. I bought that books probably 10 years ago, then I forgot about it. I always found its cover page weird, and its color awkward. But, because of these uncommon features, I got attracted by it.

Re-reading about lambda-calculus opened my eyes. It leaded me to have a particular interest in homoiconic programming languages such as Lisp and some of its dialects.

Code as Data. Data as Code.

Is this not what I was looking for? Could this not fill the void I was feeling? Is this not where my intuition was heading?

What if the “data” I manipulate is the same as the code I am writing? What if the data that I publish could be the code of a module of an application? What if writing code is no different than creating data? What if data could be self-aware of its own semantic? What if by evaluating data structures, I would validate that data at the same time? What if “parsing” my data is in fact evaluating the code of my application? What if I could reuse the tools and IDEs I use for programming, but for creating, editing and validating data? Won’t all these things make things simpler and make me even more productive to work with data?

My intuition tells me: yes!

We have a saying at Structured Dynamics: the right tool for the right job.

That seems to be the kind of tool I need to fill that void I was feeling. I had the feeling that the distinction between the code and the data should be as minimal as possible and homoiconic languages seems to be the right tool for that job.

Code as Data. Data as Code.

That is all good, but what does that really mean? What are the advantages and benefits?

That is the starting of a journey, and this is what we will discover in the coming weeks and months. Structured Dynamics is starting to invest resources into that new project. We choose to do our work using Clojure instead of other Lisp dialects such as Common Lisp. We choose Clojure for many reason: it is compiled in JVM bytecode. This means that you can re-use any of this code into any other Java applications and this also means that you can re-use any Java libraries natively into Clojure. But we also did use it because of its native way to handle concurrency and parallelism, its unique way to manage metadata within data structures, for its meta-programming capabilities using its macro system that enable us to create DSL, etc.

The goal was to create a new serialization format for RDF and to serialize RDF data as Clojure code. The intuition was that RDF data would then become an integral part of Clojure applications because the data would be the code as well.

The data would be self-aware of its own semantic, which means that by evaluating the Clojure “RDF” code it would also auto-validate itself using its embedded semantic. The RDF data would be in itself an [Clojure] application that would be self-aware of its own semantic and that would know how to validate itself.

That is the crux of my thinking. Then, how could this be implemented?

That is what I will cover in the coming weeks and months. We choose to use Clojure because it seems to be a perfect fit for that job. We will discover the reasons over time. However, the goal of these blog posts is to show how RDF can be serialized into [Clojure] code and the benefits of doing so. It is not about showing all the neat features of, and the wonderful minding behind Clojure. For that, I would strongly suggest you to get started with Clojure by reading the material covered in Tips for Clojure Beginners, and particularly to take a few hours to listen Rich Hickey’s great videos.