Create a Domain Text Classifier Using Cognonto

A common task required by systems that automatically analyze text is to classify an input text into one or multiple classes. A model needs to be created to scope the class (what belongs to it and what does not) and then a classification algorithm uses this model to classify an input text.

Multiple classification algorithms exists to perform such a task: Support Vector Machine (SVM), K-Nearest Neigbours (KNN), C4.5 and others. What is hard with any such text classification task is not so much how to use these algorithms: they are generally easy to configure and use once implemented in a programming language. The hard – and time-consuming – part is to create a sound training corpus that will properly define the class you want to predict. Further, the steps required to create such a training corpus must be duplicated for each class you want to predict.

Since creating the training corpus is what is time consuming, this is where Cognonto provides its advantages.

In this article, we will show you how Cognonto’s KBpedia Knowledge Graph can be used to automatically generate training corpuses that are used to generate classification models. First, we define (scope) a domain with one or multiple KBpedia reference concepts. Second, we aggregate the training corpus for that domain using the KBpedia Knowledge Graph and its linkages to external public datasets that are then used to populate the training corpus of the domain. Third, we use the Explicit Semantic Analysis (ESA) algorithm to create a vectorial representation of the training corpus. Fourth, we create a model using (in this use case) an SVM classifier. Finally, we predict if an input text belongs to the class (scoped domain) or not.

This use case can be used in any workflow that needs to pre-process any set of input texts where the objective is to classify relevant ones into a defined domain.

Unlike more traditional topic taggers where topics are tagged in an input text with weights provided for each of them, we will see how it is possible to use the semantic interpreter to tag main concepts related to an input text even if the surface form of the topic is not mentioned in the text. We accomplish this by leveraging ESA’s semantic interpreter.

[extoc]

Continue reading “Create a Domain Text Classifier Using Cognonto”